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Introduction

•MIDAS(MIxed-DAta Sampling) regression is a popular
forecasting/nowcasting mixed-frequency estimation method.

e.g. forecast/nowcast quarterly GDP growth rate with
monthly indicators.

•Factor model: instead of using many predictors, we can use
a few common factor from a large panel of high-frequency
predictors.

⇒ Factor-augmented MIDAS (factor-MIDAS) re-
gression models”.

•Our objective is to study the inference methods for
factor-MIDAS regression models.

Motivation

•The factors are latent, hence the estimation in factor-MIDAS
proceeds in two steps.
1 Estimate the factors by principal component analysis (PCA).
2 Estimate the parameters in the regression model.

•This two step estimation procedure complicates the
estimation.

•Previous literature show that there exists an asymptotic bias
in the factor-augmented regression models due to the two step
estimation procedure (e.g., [Ludvigson and Ng(2010)] and
[Gonçalves and Perron(2014)]).

Contribution

•We derive the asymptotic distribution of the estimators
in the factor-MIDAS regression models.

•We find that there exists an asymptotic bias.

•The bias depends on the serial dependence and
cross-sectional dependence in the idiosyncratic errors of
the factor model.

•We propose two bias correction methods:
• analytical bias correction based on asymptotic theory, and
• a bootstrap method.

•Both simulation and empirical results illustrate well that there
is a significant bias, indicating the importance of correcting it.

The model

Factor-MIDAS regression model:
yt = β0 + β′1W (L1/m; θ)ft + εt, t = 1, . . . , T

•W (L1/m; θ)ft = w0(θ) + w1(θ)ft−1/m + . . . + wK(θ)ft−K/m.
• ft is a r × 1 vector of common factors in the following
high-frequency panel factor model,

Xt−k/m = Λft−k/m + et−k/m,

for k = m− 1, . . . , 0 and t = 1, . . . , T . (High-frequency
variables are observed at most m times between t and t− 1.)
•wk(θ) = diag(wk,1(θ1), . . . , wk,r(θr)) is a r× r diagonal matrix
of weighting scheme for k-th lag of factors, k = 1, . . . , K.
•Common weighting scheme: exponential Almon lag with two
parameters such that wk,j(θj) = exp(θj,1k+θj,2k2)

∑K
k=0 exp(θj,1k+θj,2k2),j = 1, . . . , r.

•Two-step estimation procedure:
1 Estimate the factors by PCA ⇒ f̃t−k/m.
2 Estimate β = (β0, β

′
1)′ and θ = (θ1, θ2)′ by nonlinear least squares

⇒ β̃ = (β̃0, β̃
′
1)′, θ̃ = (θ̃1, θ̃2)′.

Asymptotic distribution

Using the estimated factors, if
√
T/N → c, 0 ≤ c <∞,√

T (α̃− α) d−→ N(−c∆α,Σα),
where α̃ = (β̃′, θ̃′)′ is NLS estimator and −c∆α =
−c(∆β0,∆′β1

,∆′θ)′.
∆β0 = 0 and the bias, −c∆β1 and −c∆θ depend on:
• c, which is the limit of

√
T/N ,

• the variance of the factor estimation error, which is a function
of V ar


Λ′et−k/m√

N

, and

• the covariance of the scaled average of the factor loadings and
idiosyncratic errors between distinct time, Cov


Λ′et−k/m√

N
,

Λ′et−l/m√
N

,
for k 6= l.

Therefore, the asymptotic bias depends on both serial and cross
sectional dependence in the idiosyncratic errors of the factor
model.

Inference method: plug-in bias correction
•We replace the unknown parameters by consistent estimators.
•The key is to consistently estimate a term in the bias, Γk = Cov

 Λ′et√
N
,

Λ′et−k/m√
N

).
•We propose a consistent estimator for Γk allowing for serial and cross-sectional dependence.
•
√
T (α̃BC − α) d−→ N(0,Σα), where α̃BC is bias corrected estimator, α̃BC = α̃− (−∆̃α).

Alternative inference method: a bootstrap method
•We propose a two-step bootstrap procedure:

1 resample the factor model and the nonlinear regression model by a residual-based bootstrap, and then
2 obtain bootstrap nonlinear estimates.
•We propose a new bootstrap method for factor model that is robust to serial and cross-sectional dependence, which we call
AR-sieve + CSD bootstrap and show that this method is asymptotically valid.
•AR-sieve + CSD bootstrap is an application of the autoregressive sieve bootstrap to the idiosyncratic residuals of each time series
in the panel data and the innovations are resampled using cross-sectional dependent bootstrap, proposed by
[Gonçalves and Perron(2020)].

Monte Carlo Simulation

N = 50 N = 100 N = 200

T = 50 100 200 50 100 200 50 100 200

bias of β1

True Factor 0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00

Estimated Factor -0.64 -0.57 -0.54 -0.41 -0.35 -0.31 -0.28 -0.21 -0.18

Plug-in -0.45 -0.42 -0.41 -0.26 -0.26 -0.25 -0.14 -0.14 -0.14

AR-sieve+CSD -0.23 -0.23 -0.24 -0.17 -0.16 -0.16 -0.12 -0.10 -0.10

95% coverage rate of β1

Estimated Factor 52.2 44.5 29.2 72.3 71.8 67.3 81.5 85.0 84.1

Plug-in 72.0 77.1 77.1 81.1 86.0 87.9 85.0 90.1 91.3

AR-sieve+CSD 86.3 80.0 73.5 91.0 89.8 87.1 93.2 93.2 92.6

The table shows the simulation results (size of the bias and the coverage rates) of the factor-MIDAS
regression model with a single factor. T is the time series dimension of the low-frequency target variable.
N denotes the cross-sectional dimension in the high-frequency factor model. The error terms in the
regression model are generated by GARCH model to allow for heteroskedasticity: εt =

√
htvt, where

ht = 0.1+0.3ε2t−1 +0.6ht−1 and vt ∼ i.i.d.N(0, 1). The idiosyncratic error terms are generated by AR(1)
for each series: ei,t−k/m = aiei,t−(k−1)/m + ui,t−k/m, where a = ai = 0.5 and corr(ui,t−k/m, uj,t−k/m) =

0.5|i−j| if |i− j| ≤ 5 and 0 for otherwise. Note that the coverage rate results of “estimated factors” and
“plug-in” are based on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed
percentile t method.
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Empirical application

We nowcast a quarterly U.S. real GDP growth rate with monthly
macroeconomic factors: for each h = 2, 1, 0,

yt = β0 + β′1W (L1/m; θ)ft−h/m + ρyt−1 + εt.

•Sample period: 1984 Q4 - 2022 Q4.

•h represents a nowcasting horizon. (e.g. h = 2 indicates that
we nowcast a current output growth at 2 months ahead.)

•We obtain two monthly factors from FRED-MD dataset (74
macroeconomic indicators): f1,t−k/m and f2,t−k/m explain 28%
and 10% of total variation of the dataset.

•We report 90% confidence interval of the point estimates:
based on asymptotic theory and based on bootstrap method.

h = 2 h = 1 h = 0

constant 0.90 0.83 0.99

Asymptotic 0.67 1.01 0.67 0.99 0.78 1.21

AR sieve+CSD 0.71 0.98 0.69 0.94 0.75 1.46

aggregated first factor 2.54 3.79 1.87

Asymptotic 1.64 3.44 2.97 4.61 0.31 3.44

AR sieve+CSD 2.13 3.54 3.34 4.80 0.90 3.39

aggregated second factor 0.04 0.36 -0.95

Asymptotic -0.22 0.30 0.08 0.65 -1.47 -0.43

AR sieve+CSD -0.12 0.38 0.16 0.77 -1.63 -0.21

yt−1 -0.30 -0.30 -0.58

Asymptotic -0.54 -0.06 -0.52 -0.09 -0.87 -0.28

AR sieve+CSD -0.49 -0.12 -0.43 -0.14 -1.22 -0.25

The first line in each panel gives the point estimates. The row “Asymptotic” presents
the confidence interval based on asymptotic theory, by adding and subtracting 1.645
times the heteroskedasticity robust standard errors. The row “AR-sieve+CSD” boot-
strap shows the results based on our proposed bootstrap method. We use equal-tailed
bootstrap interval with bootstrap number 4999.
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Conclusion

•We derive the asymptotic distribution of the estimators in the
factor-MIDAS regression models.

•We show that there exists a bias when the cross-section
dimension is relatively small to the time series dimension.

•The bias depends on time series as well as cross sectional
dependence in the idiosyncratic error term by the fact that the
factors and their lags are aggregated.

•We propose and theoretically justify two inference methods for
factor-MIDAS regression models: plug-in bias estimator and a
bootstrap method.
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