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Abstract

Factor-MIDAS regression models are often used to forecast a target variable using common
factors extracted from a large panel of predictors observed at higher frequencies. In the paper,
we derive the asymptotic distribution of the factor-MIDAS regression estimator coefficients.
We show that there exists an asymptotic bias because the factors are estimated. However,
the fact that factors and their lags are aggregated in a MIDAS regression model implies that
the asymptotic bias depends on both serial and cross-sectional dependence in the idiosyncratic
errors of the factor model. Thus, bias correction is more complicated in this setting. Our second
contribution is to propose a bias correction method based on a plug-in version of the analytical
formula we derive. This bias correction can be used in conjunction with asymptotic normal
critical values to produce asymptotically valid inference. Alternatively, we can use a bootstrap
method, which is our third contribution. We show that correcting for bias is important in
simulations and in an empirical application to forecasting quarterly U.S. real GDP growth rates

using monthly factors.
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1 Introduction

MIDAS (Mixed-Data Sampling) regressions are popular tools in forecasting. Originally proposed
by |Ghysels et al. (2004; 2005; [2006; 2007)), these models combine predictors observed at high
frequencies by relying on a parametric temporal aggregation function to forecast a target variable
sampled at a lower frequency. Originally proposed to handle financial variables, they have become
standard tools in macroeconomic forecasting (see e.g., |Clements and Galvao (2008; 2009), which
relies on MIDAS autoregressions for nowcasting U.S. real output growth).

More recently, standard MIDAS regressions have been generalized to “factor-MIDAS regres-
sions” (or “factor-augmented MIDAS regression models”) by including as predictors common fac-
tors extracted from a large panel of time series sampled at a higher frequency than the target
variable. By combining with the dimension reduction properties of factor models, factor-MIDAS
regressions are powerful tools for forecasting and they are often used in empirical applications (see
for instance Marcellino and Schumacher| (2010)), [Monteforte and Moretti (2013), Kim and Swanson
(2018), and |Ferrara and Marsilli| (2019)). Estimation of factor-MIDAS regressions is complicated
by the fact that some of the predictors are latent common factors. It typically proceeds in two
steps: we first extract the common factors using principal component analysis, and then estimate
the model using nonlinear least squares, where the estimated factors are aggregated by a temporal
aggregation scheme.

Although factor-MIDAS regressions are empirically popular, no formal inference methods have
been proposed in the literature. The paper proposes inference methods for factor-MIDAS regression
models and provides the theoretical justification for these methods. The main contributions of this
paper are as follows. Firstly, the asymptotic distribution of the factor-MIDAS regression estimators
is derived. We show that there is an asymptotic bias in the second step due to the estimation of
the factors in the first step. Secondly, we propose two inference methods accounting for this bias:
a bias correction method based on the bias formula we derive and a bootstrap method.

Our work is related to the existing literature on factor-augmented regression models (without
mixed frequencies). [Bai and Ngj (2006) first studied the “generated regressor” problem in standard
factor-augmented regression models. They showed that inference for the regression coefficients
could proceed as if the estimated factors were observed if the cross-sectional dimension N was

sufficiently large relative to the time dimension 7', more precisely if \/T/N — 0. More recently,



Gongcalves and Perron (2014)) (henceforth, GP (2014)) showed that an asymptotic bias may appear
under more relaxed assumption (i.e. if VI/N — ¢, 0 < ¢ < 00). We extend these results to
factor-MIDAS regression models. This is not a trivial extension for two main reasons. First, the
estimation problem in a factor-MIDAS regression model is more complicated because the predictors
include latent factors (and their lags) sampled at a different frequency than a variable of interest.
In addition, the second step is based on nonlinear least squares (rather than OLS) because of a
temporal aggregation, and this complicates the asymptotic analysis. In particular, whereas the
bias derived in |Gongalves and Perronl (2014) depends only on the cross-sectional dependence, the
asymptotic bias of a factor-MIDAS regression model depends on both serial and cross-sectional
dependence in the idiosyncratic errors. Consequently, different methods of inference are required
for factor-MIDAS regressions.

We consider two different methods of inference in this context. The first is an analytical bias
correction that can be used along with asymptotic normal critical values. Our plug-in bias correction
is robust to both serial and cross-sectional dependence of unknown form in the idiosyncratic errors.
It is based on the asymptotic formula of the bias we derive, replacing unknown parameters with
consistent estimators. As in|Ludvigson and Ng| (2009), who also proposed a bias correction formula
for the standard factor-augmented regression model without mixed frequencies, we rely on the
CS-HAC estimator of Bai and Ng (2006) to correct for cross-sectional dependence. However, our
estimator is more complex since it also requires robustness to serial dependence.

Our second method of inference is based on the bootstrap. The bootstrap has two significant
advantages: it can perform better in finite samples, and it avoids the explicit estimation of the
bias term which can be complicated in this context. We propose a bootstrap procedure inspired by
Gongcalves and Perron (2014)), which is a residual-based bootstrap. Although the method is inspired
by |Gongalves and Perron (2014)), the asymptotic justification is substantially more complicated.
More importantly, the need to mimic the asymptotic bias requires the bootstrap to be robust to
both serial and cross-sectional dependence. Since none of the existing bootstrap methods in the
literature allows for both forms of dependence, we propose a new bootstrap method for factor
models that has these properties. Our method is based on an application of the sieve bootstrap to
the idiosyncratic residuals of each time series in the panel data model, where the corresponding in-

novations are resampled using the cross-sectional dependent bootstrap proposed by |Gongalves and



Perron (2020)). We show that this bootstrap method is asymptotically valid when each idiosyncratic
error in the factor model is generated by an AR(oco) process with innovations that are potentially
cross-sectionally correlated across the panel. A special case of this new bootstrap method is con-
sidered by (Gongalves, Koh, and Perron| (2023) when testing for the number of common factors in
group factor models (as proposed by |Andreou, Gagliardini, Ghysels, and Rubin| (2019)).

We illustrate the good finite sample performance of the plug-in bias estimator and the bootstrap
using Monte Carlo simulations. In particular, the results show that it is important to correct the
bias due to the estimation of the factors in the first step. Although both the plug-in bias correction
and the bootstrap methods replicate the bias well, the bootstrap outperforms the plug-in bias
estimator by further reducing the coverage rate distortions. Finally, we apply our new inference
methods to an empirical application where we nowcast quarterly U.S. real GDP growth rate using
monthly macroeconomic factors. The results show that there is a significant bias, thereby indicating
the importance of correcting it.

The rest of this paper is organized as follows. In Section [2] we derive the asymptotic distri-
bution of the factor-augmented MIDAS regression model and propose a plug-in bias estimator. In
Section [3] we propose and theoretically justify the bootstrap. The simulation results are shown
in Section [4] and the empirical application is discussed in Section Section [6] concludes the pa-
per. Additionally, we include three mathematical appendices: Appendix [A] delivers the primitive
assumptions necessary for proving the results in the paper and Appendices [B] - [C| shows the proof

of the results in Sections respectively.

2 Asymptotic Theory

2.1 Factor-augmented MIDAS regression models

The MIDAS regression model projects high-frequency variables onto a target variable, which is
denoted as ;. The regressors are observed at most m times between ¢ and ¢t — 1. To handle
variables sampled at mixed frequency, a MIDAS regression aggregates the high-frequency variables
with a lag polynomial function. The basic MIDAS regression model with a single observed regressor

x4 can be written as follows:

yr = Bo+ W (LY™ 0wy + &4, t=1,...,T, (1)



where W (L'/™;0) = Zle wi(0)LF/™ and LF/™ gz, = Ty_p/m- Here, wy () is a weighting function
that temporally aggregates the regressor and its lags, and 6 is a px 1 vector of weighting parameters.
To identify (1, we assume that wg(0) € (0,1) and Zk;K:1 wk(f) = 1. A common weighting scheme
in the MIDAS regression model is the exponential Almon lag with two parameters such that

exp(01k + O2k?)
wi(0) = —5 o
k1 €Xp(01k + O2k?)

(2)

Other weighting schemes include the beta function and the linear function. Details can be found in
Ghysels, Valkanov, and Serrano| (2009)). Although the high-frequency variable is used in the regres-
sion in a linear manner, the estimation of the parameters is done through a nonlinear estimation
method as the MIDAS regression itself is a nonlinear function of the parameters.

In this paper, we consider the factor-MIDAS regression model, which employs unobserved high-
frequency factors as regressors. In particular, letting the regressor x; in be replaced by a latent

factor, we write the model as follows:

K
ye=Bo+ BIW(LY™0) i+ &0 = Bo+ B Y wi(0) fropjm + 61, t=1,...,T,
k=1

where f;_j/,, is a (single) factor in the following panel factor model,
thk/m:Aftfk/m—’_etfk/m? k:m—l,...,O, andt:1,...,T. (3)

The factor model includes factor loadings denoted by A and an idiosyncratic error term, e;_j /. If
there are r unobserved factors, represented by a r X 1 vector of common factors denoted by f;_y/m

in the factor model , then the model can be generalized as follows:
Yt = ﬁﬂ + ﬁiW(Ll/m’ H)ft + €t = /BO + /BiFt(e) + Et, t= ]-7 LIRS 7T7 (4)

where 81 = (B11,...,01,), and 6 = (01,...,0.) with 0; = (0;1,...,0;,)", a p x 1 weighting
parameter for j-th factor, for j = 1,...,r. We define F;(9) = W (L'/™;0) f, in the second equality.

In fact, the temporal aggregation in this generalized model applies on a vector as

K K
Fy(0) =Y we(®) L™ fy = wi(0) froijm,
k=1

k=1

where wy,(6) is a r xr diagonal matrix such that wy(0) = diag(wy,1(61), . .., wg,(6r)), where wy, ;(6;)



is the weight for the k-th lag of the j-th factorE To derive the distribution in the next section, we

further simplify the general factor-MIDAS regression model to
yt:g(Ft,a)+5t, t:].,...,T, (5)

where g(F, ) = fo-+ B F(0), a = (8,0') with 8 = (B0, B1)', and Fy = (L ff, f1_y p -+ sy
For convenience, we use the high frequency time index denoted by ¢, = 1,...,Ty, where Ty = mT.
We derive this by noting that ¢, = m((t—1)+i/m) fori=1,...,m,and t =1,... 7TE| Using this
notation, we can write the factor model as X;, = Af;, +ey,, for ¢, =1,...,Ty. Using the matrix
notation, we write the factor model as X = fA’+e, where X is a Ty x N matrix of high-frequency
time series, f = (f1,..., fr,) is a Ty X r matrix of common factors, and e is a Ty x N matrix of

idiosyncratic errors.

2.2 Asymptotic Theory

We denote NLS estimators by & when the factors are observed. Then, we could show that the

limiting distribution of & is:
VT(6 - ag) % N(0, 57108, (6)

where ag = (8',0"), £ = Elga,194), and Q = Elefga,190, ] with gay = 0g(Fy, ) /Oc. When the
true factors are observed, the estimators are normally distributed with mean zero and a sandwich
variance.

In factor-MIDAS models, however, the factors are latent, and we have to estimate them. Ac-
cordingly, the estimation in the factor-MIDAS regression model proceeds in two steps. First, we
estimate the common factors from a panel dataset of high-frequency indicators by principal com-
ponent analysis (PCA). The estimated factors, f , are equivalent to /Ty times the eigenvectors of
XX'/TyN corresponding to the r largest eigenvalues (in decreasing order). The estimated factor

loadings are A = X' f /T H Second, we estimate the parameters, 8 and 6 using nonlinear least

!Note that when m = 1 and K = 0, the factor-MIDAS regression model is equivalent to the standard factor-
augmented regression model in GP (2014).

2With this notation, a high-frequency observation at t is equivalent to observing it at the i-th intra-period
between ¢ — 1 and ¢t. Note that the time notation in the factor model can be written as (¢t — 1) + (m — k)/m.

3When Ty > N, we use normalization such that A’A/N = I,. and f'f is a diagonal matrix, which is computationally
easier. In this case, A is the matrix of v/ N times the eigenvectors of X'X/TuN corresponding to the r largest
eigenvalues and the estimated factors are f = XA/N.



squares (NLS) by regressing the low frequency variable on the temporally aggregated estimated
factors at high-frequency. In the factor model, the estimated factors f; are only consistent for H fy,
where the rotation matrix H is defined as H = ‘7—1%/\/7/\’ and V is a r x r diagonal matrix of
eigenvalues of X X’ /Ty N in a descending order (for more details, see Bai| (2003)). By incorporating

the estimated factors in the regression and noting the rotation of the factors, we can rewrite as

follows:
ye = Bo+ BLH TF(0) + B1H W(HE(0) — Fy(0)) + &0 = g(Fr, ) + &, (7)

where g(Fy,a) = Bo + BiH 'Fy(0), o = (Bo, BLH 1,0, and Fy(0) = S5 wk(8) fi_p/m- The
coefficient on the aggregated factors estimates 3] H 1. Moreover, the estimation error of the factors
implies that the regression error term is & = ) H '(HF,(0) — F(0)) + &;. We denote the NLS
estimators of a in (7)) by & = (3,8’ to distinguish from & = (5, 8')’, which are the estimators from
the regression of y; on the true factors f;. Next, we derive the limiting distribution of vT'(& — «)
under the assumption that T /N — ¢, where 0 < ¢ < oo.

The asymptotic distribution of the estimators is derived under the Assumptions - in

Appendix Al We also introduce the following notations: V = plimV, Q = plim <%), Qr =
plim EZ;H:,CH f{hfth,k, and E]; = V-1QIrQ'V—", which is the asymptotic variance of \/N(fth —

H fth)ﬁ The asymptotic variance of the factor estimation error is a function of I', which is defined

. A . 9. . . .
by I' = limy_o Var (%) We assume that the idiosyncratic errors in the factor model, e;, is

stationary in[Assumption A.2t(d). Under the stationarity of the idiosyncratic errors, we also denote

I !
A €, —k A ety

Iy = limy_ o Cov ( N IN ) Note that by the identification assumption, |Assumption A.1}

(d) in we have ) = Hy, where Hy = plim H, and Hj is a diagonal matrix of +1, where
the sign is determined by the sign of f’f/TH (for the detail of the proof, see the proof of (2) in Bai

and Ng (2013)). Therefore, the asymptotic variance can be also written as E]; = V_lHOFH(’)V_l.

Theorem 2.1 (Asymptotic distribution of the estimators in the factor-MIDAS models)
If VT/N — ¢, where 0 < ¢ < oo, and the Assumptions|A.1| -|A.6 in|Appendiz Al hold,

VT(a - a) L N(—cAa, Sa), (8)

4For the details, see Bail (2003).



where Yo = @6_12_192_1<1351 with ®g = diag(1, Ho, I,), and

A B
Ao=|""] = (@xap) | " (9)
Ay By
Bg = (Bg,, Bj,)" and By are such that Bg, =0,
K
Bs, = [Zwk(e){zf+vzfv—l}wk(e)
k=1
K K )
+ 30D wnO{ VT HoTw  HGV ™+ Qi THEV ™2 b (6)] plim (By), (10)
k=1 I£k
and
K
o Owy (6 _
By = plim(f1) o [ ake( ){zf VSV 1}wk(9)
k=1
Owp( _ _ .
+ ZZ ’“ { TUHOTy YV ™ 4 Qe DHGY 2 bun(0)] plim(B), (11)
k=1 I#k
where M = diag <aw]3;1(01), R 6w,§5r(07)) is a block diagonal matriz and the j-th diagonal block
s a p X 1 vector given by kij(e forj=1,...,r

In in [Theorem 2.1} we use the Hadamard product which is equivalent to (Ao B);; = A;;B;j.
8wk (6’)

More specifically, 3 o
0 0;
525

the limiting value of vT /N, and also to plim(5;) = (H~!)’8;. This implies that the estimates are

is a block diagonal matrix where the j-th diagonal block contains

for j =1,...,r. Based on|Theorem 2.1, the bias of the estimators is proportional to ¢,

biased unless 1 = 0 or ¢ = 0. Additionally, the asymptotic variance of the estimated factors, X 7
affects the bias. Since the variance of the factor estimation error depends on I', which is a variance
of the scaled average of the factor loadings and the idiosyncratic errors in the factor model, the
cross-sectional dependence of factor errors matters. These findings are similar to the bias in the
context of GP (2014).

It is important to highlight some differences between our results and GP (2014). Firstly, the
bias in the MIDAS regression model depends on the weighting scheme, wy(6), due to a temporal
aggregation. Secondly, there exists a bias in the weighting parameters, §. The bias in # is similar to

the bias in the slope coefficient, 5. However, it differs in that the bias in the weighting parameters



depends on the derivative of the weighting scheme and quadratic form of the slope coefficient. This
occurs because MIDAS regressions are a nonlinear function of the weighting parameters.

Finally, in and , both biases depend on the covariance of the cross-sectional av-
erage of factor loadings and the idiosyncratic error terms between two distinct periods, repre-
sented as I'p_;. This term arises due to the presence of the lags of the estimated factors. More
specifically, as we include the lags of the estimated factors, we have an extra term such that
ﬁ ZZ;H:kH Cov(VN(f, — Hft,), VN(ft, -k — Hft, &) for k # 0. Since this is a function of 'y,
the bias in our context relies on the serial dependence as well as cross-sectional dependence of the
idiosyncratic error term in the factor model. This implies that the bias will depend on serial and

cross-sectional dependence in the factor-MIDAS regression models without temporal aggregationﬂ

2.3 Plug-in Bias

In this section, we propose an analytical estimator to account for the bias identified in[Theorem 2.1}
In the context of the factor-augmented regression model, Ludvigson and Ng (2009) proposed a
plug-in bias estimator by replacing the unknown quantities with their consistent estimators and
correcting the bias. Similarly, we propose a bias-corrected estimator for factor-augmented MIDAS
regression models.

In order to do that, we need a consistent estimator for the term I'y. This term has not been
explored in previous literature and it depends on the cross-sectional and the serial dependence of
the idiosyncratic error term. When the idiosyncratic error term is serially but not cross-sectionally
correlated, we can estimate this term as f‘k = m ZQH:,CH Zfil 5\¢5\§é¢7théi,th_k, where fk
denotes the estimator of I'y,. However, when the idiosyncratic error term is cross-sectionally and
serially dependent, estimating this term is no longer straightforward, as discussed in [Bai and Ng
(2006)). To address this issue, Bai and Ng| (2006) propose an estimator for the variance-covariance
matrix of the cross-sectional average of factor loadings and the idiosyncratic error term, denoted
by I'. They use the time series observations and truncation with n < N under the covariance
stationarity such that T'cg pac = % Yoy Z?:1 Xli]ﬁ Ez;LH:l €it), )t -

To propose a method to estimate I'; that takes into account cross-sectional and serial depen-

dence, we take an approach, similar to the one used in Bai and Ng| (2006). We use the time series

"When there is no temporal aggregation, the MIDAS regression becomes unrestricted MIDAS (U-MIDAS) pro-
posed by [Foroni, Marcellino, and Schumacher| (2015]).



observations and a truncation method, that limits n < N observations. We denote the estimator

for I'y by I'), which is defined as follows:

fk,CS-HAC _y Z Z Z A 5\/ €ity €j,t—ks (12)

thmhitl =1 j=1

where n = min(v/N, /T ). Note that by Assumption (d), ', does not depend on time.

Theorem 2.2 Suppose the Assumptions [A.1HA.4] in [Appendixz A hold. Then, for any fixed k =

0,1,2,...,

n
min(N, Ty)

Here, in [Theorem 2.2, T depends on the assumption on the serial and cross-sectional de-

pendence in the idiosyncratic errors of the factor model. If there is only serial dependence,

Dy — Hy 'ThH Y B 0 df -0,

= % ZN N )\’ TH T Zth L is1 €ty City—k- 1f we allow for cross-sectionally dependence addi-
tionally, T’ [r = T .cs-HAC defined in Note that if k& = 0, our estimators are equivalent to
the estimators proposed in Bai and Ng (2006). enables us to construct consistent
estimators for and as follows:

K K K
Bg, = [2 > wr(O)S pw(0) +> 0> wk(é){‘?_lfk—l,cs-HAcff’_l + Qk—lfCS-HACV_Q}wl(é)} B, and
k=1 k=1 £k
K ~ K K
= 8wk(9
=p10|2 Z
| 2" 22

{ TrosuacV '+ QroiLesmacV ™ } (~)]5~1,

- - g - . T L
where X7 =V QT csnac@QV ! with Q = f/f /Ty, and Qp_; = Dotk ft, ftn—1- Note that the
bias estimates can be simpler under the restriction on either cross-sectional or serial dependence, or
both. We denote the bias-corrected estimator by agc such that agc = a — (—iAa). Here, —Aa

is the estimate of the bias in &, where A, (Bﬁ,BG) with Bs = (Bg,, B,B )" and Bg, = 0.

Proposition 2.1 Suppose the Assumptions|A.1| - |A.6 in|Appendiz Al hold and VT /N — ¢, where

0 <c< oo, then
VT(ape—a) % N(0,%,). (13)

Based on Proposition [2.I] the bias corrected estimator no longer contains an asymptotic bias.

However, it is well known that an approach based on asymptotic theory does not perform well in

10



finite samples. Additionally, the bias takes a very complicated form in our context, which makes it
difficult to implement. Therefore, we discuss an alternative approach, a bootstrap method in the

next section.

3 Bootstrap method: Autoregressive-sieve + CSD bootstrap

In this section, we propose a bootstrap method and show its validity by proving that our method
satisfies bootstrap high level conditions under which any general residual-based bootstrap is satis-
fied. The bootstrap high level conditions are similar to those of GP (2014), hence we leave them
in the appendix (see [Appendix C).

In particular, we propose a bootstrap procedure, where we resample the factor model and the
MIDAS regression model, and then obtain the bootstrap estimates. For resampling the idiosyncratic
errors in the factor model, GP (2014) proposed a wild bootstrap and proved its validity in the
context of the factor-augmented regression models under no cross-sectional dependence. To allow
for cross-sectional dependence, |Gongalves and Perron (2020) proposed a bootstrap method that
utilizes a thresholding technique to allow for the cross-sectional dependence, so-called CSD (cross-
sectional dependent) bootstrap. However, these methods cannot be used in our context as it
destroys the serial dependence in the idiosyncratic error terms.

Therefore, we propose a new method that combines autoregressive sieve bootstrap, which was
originally proposed in |[Bithlmann| (1997) and has been further discussed in Kreiss, Paparoditis, and
Politis| (2011)) and the CSD bootstrap. We refer our bootstrap method to AR-sieve + CSD boot-
strap. Our bootstrap method is recently considered by |Gongalves et al.| (2023), where they replace
the autoregressive sieve bootstrap with an autoregressive parametric bootstrap. The AR-sieve +
CSD bootstrap method resamples each time series residual in the factor model with an autoregres-
sive sieve process and the corresponding innovations by the CSD bootstrap method. Therefore,
the cross-sectional dependence is captured in the innovation terms and the serial dependence is
captured by an autoregressive process.

In order to prove our bootstrap method is valid, we assume that {e; th}t,H—1 is a causal process
b 1

that can be represented as an AR(co) process such that e;, = > 72, aijeir,—j + uig,, for tp =
1,..., 7y and 7« = 1,...,N. We assume the autoregressive process is stationary such that the

coeflicients are absolutely summable, Z;’il |a; j| < oo, for each i =1,..., N. The innovation terms

11



in AR(oo) process, us, = (uiy,,...,uny,) , are identically and independently distributed from a
distribution with mean zero and finite variance, ,. Here, X, is assumed to be non-diagonal to
account for cross-sectional dependence in the idiosyncratic error term. Our bootstrap algorithm is

as follows.

Bootstrap Algorithm

1. For each i = 1,..., N, select an order p; = p;(Ty), pi << Tg, and fit a p;-th order autore-
gressive model to €;1,...,€;1,, where &4, = X;, — S\zfth We denote a;(p;) = (a;,(pi),J =
1,...,pi), the Yule-Walker autoregressive parameter estimators, such that a;(p;) = f(pi)_lﬁpi,

with 3p, = (Fe(1),9(2), - . ., Fe(pi)) and f(pl) = (Je(r — 8))rs=1,2,....p; sSuch that

1 Ty —|7|
Ye(T) = T > (City = @) (Eigy i — €, (14)
th=1
_ ~ _p-1xTu s
for7=0,...,p; and &; =T} Ethzl €it-
With chosen lag length p; = p;(Th),
pi
€t = Zaid(pi)e;’k,th—j +uiy,, fortp=1,...,TH, (15)
j=1
where uj, = (ujy, ..., Ul ) = flql/znth with 7, ~ ii.d (0,Iy). The initial conditions are
e;O, ey 6?,1fpi =0, fori =1,..., N, which is equivalent to the stationary mean of ez‘,th in the

bootstrap world. Following |Gongalves and Perron| (2020), we choose %, by a thresholding

technique such that

Yu = (Ouij)ij=1,..,N

with
Ouij i=7 1 &
R u,ij = = _
Ouij =4 ) o with oy = > it Tty
Fuijl (|0uij| > w) 17 j, Hy=1
where w is a threshold and @iy, = €it, — 5o @ij(Pi)éiy,—j for i = 1,...,N and t; =
1,....Ty.

12



2. Fort=1,...,T,
yi = Bo+5~ipt(9~) + i,

where €} = 14y, € = yr — BNO — Biff}(é) and 14 is randomly generated from a standard normal

distribution i.i.d. across t.

3. We obtain the estimated factors, f* and factor loadings, A* by principal component analysis

on bootstrap panel, X;.

4. By regressing y; on 1 and temporally aggregated ( ft*il o ft*i K /m)’ , we obtain the esti-

mates in the bootstrap world, B* and 6.

In step 1, we resample the residuals of the factor model by AR sieve + CSD bootstrap. The
way we resample the residuals in the factor model is similar to the bootstrap procedure in Kreiss
et al. (2011) and Buhlmann| (1997). The difference is that we resample the innovation terms in
the autoregressive process for each series using CSD bootstrap proposed by |Goncalves and Perron
(2020). In the second step, we resample the regression errors by a simple wild bootstrap, which is
the same bootstrap method used in GP (2014) and in |Goncalves and Perron (2020) in their second
step. Finally, we estimate the factors and factor loadings from a bootstrap panel dataset, X; ,
for t, =1,...,TH, and estimate the parameters by regressing the bootstrap samples, y; on 1 and

F}(0). To prove the validity of AR sieve + CSD bootstrap, we introduce the following additional

assumptions.

Assumption 1 \; are either deterministic such that ||A;|| < M < oo, or stochastic such that
E|N|*2 < M < o foralli: E|fy, |12 < M < oo; Elejy, |*> < M < oo, for all (i,t,); and for some

q>1, Blgg|* < M < oo, for all t.

Assumption 2 E(e¢|ys, Fy, yi—1, Fi—1,...) =0, and Fy = (ft, ... ,ft,k/m)’ and € are independent

of the idiosyncratic errors e; s, for all (i,sp,t).

ASSHn’lptiOl’l 3 Cit, = Z;il amei,th_j -+ U ty, 5 with Z?il \ai,j| < oo, fO’I’ th = 1,. . .,TH and
i=1,...,N.
Assumption 4 ¥, = E(uy,uy,) = (0uij)ij=1,..N, with uy, = (u1,,---,ung,) s for all ty, i, j

and is such that Apin(Xy) > ¢1 and Apax(3y) < ca for some positive constants ¢1 and c;.
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Assumptions|l]and[2) are equivalent to the Assumptions 6 and 7 in GP (2014). In

we strengthen the moment conditions for the factors and factor loadings in [Assumption A.1|in [Ap-|

[pendix Al [Assumption 2|justifies the wild bootstrap in the second step as the regression error term

is a martingale difference sequence. Furthermore, we assume that each time series idiosyncratic
error term is a stationary autoregressive process of infinite order in[Assumption 3} Finally,
is similar to the CS assumption in |Gongalves and Perron| (2020) (on the idiosyncratic error
terms) and |Gongalves et al.| (2023) (on the innovations of the idiosyncratic error terms). We assume
that the variance-covariance matrix of the innovation terms is time-invariant and the innovation
terms are weakly dependent in cross-sectional dimension. Under these additional assumptions, we

show the validity of the AR-sieve +CSD bootstrap method in the following theorem.

Theorem 3.1 Suppose that autoregressive sieve with CSD (AR-sieve + CSD) bootstrap and wild
bootstrap are used to generate {ej, } and {e}}, respectively with E*|nit, |t < C for all (i,t) and
E*|v|* < C for allt, for some q > 1. If Assumptions|A.1]-[A.6 in[Appendiz Al and Assumptz'ons
-[4 hold,

sup |P*(VT(®*a* —a) < z) — P(WT(a—a) <z)| 2 0.

zERTTP

4 Monte Carlo Simulation

In this section, we confirm the presence of bias in the factor-MIDAS regression models, and show
the finite sample performance of both inference methods we propose. The data generating process
(DGP) is similar to GP (2014) and |Aastveit, Foroni, and Ravazzolo| (2017). We consider the

factor-MIDAS regression model with a single factor model as follows:

K
ye=Bo+ B> wil0) fiogm + <t (16)
k=1
Xit—k/m = Nift—k/m T €it—kjm» k=m—1,...,0. (17)
For a weighting function, wy(@), for k = 1,..., K, we use the exponential Almon lag with two

parameters, .

The factors and factor loadings are generated similarly to GP (2014). The single factor f;

is randomly drawn from a standard normal distribution independently over time. The factor
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loading, A; is randomly drawn from a uniform distribution of the interval [0, 1] independently
across indicators, i. We consider that the high-frequency variable is observed at most 3 times
between ¢ — 1 and ¢ (equivalent to low-frequency data being quarterly and high-frequency data
being monthly). The parameters are Sy = 0, f; = 2.5, §; = 0.007 and 03 = —0.01. We choose the

weighting parameters similar to |Aastveit et al. (2017)) to induce fast-decaying weights.

Table 1: Data generating process

DGP ‘ £t ‘ €ity,
1 N(0,1) N(0,1)
2 | & = VR N(0,1)
3 et = Vhivy N(0,02)
4 et = Ve | AR + N(0,07)
5 | e =+vhw | CS+ N(0,1)
6 et = Vhvy CS + AR

where hy = 0.1 + 0.3e7_; + 0.6h¢—1 and
v ~ iild.N(0,1) for t = 1,...,T and t, =
1,...,Txy.

shows six different scenarios to generate the idiosyncratic error terms and MIDAS regres-
sion error terms. We consider the error term in the regression model to be either homoskedastic or
heteroskedastic. In DGP 1, we consider homoskedastic error term and in the rest of the DGPs, the
error terms are conditionally heteroskedastic. When they are homoskedastic, the errors are drawn
independently and identically from a standard normal distribution. To allow for heteroskedasticity,
we assume that the error terms follow a GARCH model, which implies that they are condition-
ally heteroskedastic but unconditionally homoskedastic. Particularly, we use the same process in
Aastveit et al. (2017): &; = v/hyvy where hy = 0.1 + 0.32_| + 0.6h;—1 and v; ~ i.i.d.N(0, 1).

For the idiosyncratic term in the factor model, we use the same data-generating process in
GP (2014). In DGP 1 and DGP 2, the idiosyncratic error terms are homoskedastic by randomly
generating them from a standard normal distribution. DGP 3 induces heteroskedasticity in the
idiosyncratic term, where the variance for each indicator is drawn from UJ0.5,1.5]. DGP 4 intro-
duces the serial correlation by generating the idiosyncratic term from an autoregressive model of
order one such that e;;, = piei, —1 + wiy,, where u; 4, ~ii.d.N(0,1). For simplicity, we let p; = p

foralli=1,...,N, and p = 0.5. The idiosyncratic terms are re-scaled by (1 — p2)1/2 so that the
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variance of the idiosyncratic error terms is 1. DGP 5 allows for cross-sectional dependence in the
homoskedastic idiosyncratic terms as in GP (2014) and Bai and Ng| (2006). Precisely, we let the
correlation between e;;, and e;;, be 0.5/"=7l for |i — j| < 5 and 0 for otherwise. In DGP 6, the
idiosyncratic error terms have both serial and cross-sectional dependence. The idiosyncratic error
terms follow the autoregressive process of order 1 with the innovation term being cross-sectionally
correlated. The idiosyncratic terms in DGP 5 and 6 are also re-scaled to have the variance 1, the
same as in other designs.

We report the size of the bias in a slope coefficient for the single factor, 5. Mainly, we report
two sets of results: based on asymptotic theory and based on the bootstrap method. The bias
based on asymptotic theory is reported when we use the true factor, the estimated factor, and
the plug-in bias estimator. We also impose that we know Cov(e;t,,€;1,—r) = 0 for k > 1, and
therefore we only compute the bias term up to the first degree covariance term. The other set of
results includes the bias based on two different bootstrap methods: wild bootstrap and AR sieve
+ CSD bootstrap. The wild bootstrap is only valid when the idiosyncratic error terms do not
have the serial and cross-sectional dependence, DGP 1 - 3. For the rest of the designs, the wild
bootstrap is not valid. Therefore, under the general settings (DGP 4 - 6), we can quantify the cost
of not accounting for either time series or cross-sectional dependence or both in the idiosyncratic
error term by comparing two bootstrap methods.

To compute the size of bias, we use the approach described in GP (2014). The bias in the
original sample is calculated as the average of H B — 3. This guarantees each estimator in the
replication to be consistent for ;. In the bootstrap world, similarly, we compute the bias of
the bootstrap estimator as the average of HH *5’{ — HpB;y. We also report the 95% coverage rate
for the associated estimators: estimated factors, plug-in bias and two bootstrap methods. The
coverage rates associated with the bootstrap methods are reported by using the bootstrap equal-
tailed percentile-t method.

All our simulation results are based on 5000 replications and 399 bootstraps. We consider
T = 50,100,200 and N = 50, 100, 200. Since the high frequency is observed m = 3 times more, the
time series dimensions in the factor model as 150, 300, and 600, respectively. We choose K = 11,
which implies that a low-frequency variable can be explained by 11 lagged monthly factors.

shows the results of DGP 1 and 2 in each panel. The first panel shows the results of
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Table 2: DGP 1 & DGP 2 - Bias and coverage rate of 95% ClIs for 3

N =50 N =100 N =200
T =50 100 200 50 100 200 50 100 200
Ty =150 300 600 | 150 300 600 | 150 300 600
bias
True Factor -0.01 -0.01 0.00 | -0.02 -0.01 0.00 | 0.00 0.00 0.00
Estimated Factor -0.32 -0.31 -0.29 | -0.20 -0.17 -0.16 | -0.12 -0.10 -0.08
Plug-in -0.38 -0.34 -0.32|-0.21 -0.19 -0.18 | -0.10 -0.10 -0.09
DGP 1: WB -0.25 -0.24 -0.23|-0.16 -0.15 -0.14 | -0.11 -0.09 -0.08
homo & AR-sieve+CSD -0.24 -0.24 -0.23 | -0.16 -0.15 -0.14|-0.10 -0.09 -0.08
homo 95% coverage rate
Estimated Factor 84.8 82.0 739 | 8.6 90.5 883 | 91.7 92.7 934
Plug-in 87.6 89.1 89.3 | 90.4 92.1 924 | 91.2 92.7 93.6
WB 94.1 94.7 933 | 95.0 95.6 94.5 | 92.7 954 949
AR-sieve+CSD 95.8 949 924 | 95.8 96.1 95.0 | 96.0 96.3 95.3
bias
True Factor -0.01 0.00 0.00 | 0.00 0.01 -0.01] 0.01 -0.01 0.00
Estimated Factor -0.34 -0.30 -0.29 | -0.19 -0.16 -0.16 | -0.10 -0.10 -0.09
Plug-in -0.37 -0.34 -0.32|-0.20 -0.19 -0.18 | -0.10 -0.10 -0.09
DGP 2: WB -0.24 -0.24 -0.23|-0.16 -0.15 -0.14 | -0.10 -0.09 -0.08
hetero & AR-sieve+CSD -0.24 -0.24 -0.23 |-0.16 -0.15 -0.14 | -0.10 -0.09 -0.08
homo 95% coverage rate
Estimated Factor 78.1 76.2 684 | 8.9 881 86.2 | 8.7 915 91.6
Plug-in 82.7 86.8 883 | 8.6 89.8 92.5 | 88.9 923 92.5
WB 91.7 93.0 93.1 | 926 93.3 94.2 | 91.0 944 94.0
AR-sieve+CSD 92.5 929 922 | 94.0 952 93.8 | 93.5 94.8 948

In DGP 1, both error terms are homoskedastic. In DGP 2, MIDAS regression error terms are heteroskedastic and idiosyncratic
error terms are homoskedastic. The results of coverage rates, when we use the estimated factors and plug-in bias, are based
on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile ¢ method.

DGP 1, where both error terms are randomly generated from an i.i.d. standard normal distribution.
Below the row “bias”, we have a size of bias for each case: true factor, estimated factor, plug-in bias
and two bootstrap methods. The fourth and fifth rows contain the bias when we use the bootstrap
methods, wild bootstrap, and autoregressive sieve with CSD bootstrap, respectively. The results
indicate that there is no bias when using the true factor, however, a bias does exist when using the

estimated factor as a regressor. Increasing the sample size in both cross-sectional and time series
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dimensions results in a decrease in bias. If the cross-sectional dimension is small (50 and 100), the
plug-in bias tends to overestimate the bias size. Both bootstrap methods perform similarly and
replicate bias size well. When no method is used to correct the bias, size distortion occurs in terms
of coverage rates. The plug-in bias somewhat recovers the size distortion, but bootstrap methods
outperform the plug-in bias method. The results of DGP 1 and DGP 2 are similar, and both
bootstrap methods are valid for these scenarios since the idiosyncratic error terms are randomly
selected from a standard normal distribution.

The results of DGP 3 and 4 are presented in In both scenarios, the MIDAS regression
error terms are now heteroskedastic for both DGPs. The idiosyncratic error terms are heteroskedas-
tic. The results of DGP 3 are similar to those of DGP 1 and 2. We have a bias when we use the
estimated factor and the plug-in estimator overestimates the magnitude of the bias, especially in
small samples. Both bootstrap methods outperform the plug-in estimator in terms of replicating
the bias size and correcting the distortion. In DGP 4, the idiosyncratic error terms exhibit not
only heteroskedasticity but also display serially dependence. In contrast to DGP 3, the bias size
increases as we introduce serial dependence in the error term of the factor model, and it is about
twice as large as that in DGP 3. This is consistent with the asymptotic bias result in
where time-series dependence contributes to the bias. The plug-in bias is no longer overestimating
the bias size[f]

Comparing the two bootstrap methods, it is evident that the autoregressive sieve with the CSD
bootstrap method performs better than the wild bootstrap method. Note that the wild bootstrap
is no longer valid under serial dependence. In fact, for some sample sizes, the wild bootstrap even
performs worse than the plug-in bias. We can also confirm that the autoregressive sieve + CSD
bootstrap procedure outperforms the plug-in bias and wild bootstrap procedure by comparing the
results of coverage rates. The coverage rates from AR sieve + CSD bootstrap outperform the
plug-in and wild bootstrap methods in all sample sizes.

Finally, we present the results of DGP 5 and 6, which are shown in In DGP 5,
the idiosyncratic error term is only cross-sectionally correlated. The AR-sieve + CSD bootstrap

performs better than the wild bootstrap method but worse than the plug-in bias method. However,

51t is important to note that since the bias depends on the serial dependence, the persistence in the idiosyncratic
error term may also have an impact. We have observed that with an increase in persistence, the bias also increases

(refer to the additional table in [Appendix D).
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Table 3: DGP 3 & DGP 4 - Bias and coverage rate of 95% ClIs for 3

N =50 N =100 N =200
T =50 100 200 50 100 200 50 100 200
Ty =150 300 600 150 300 600 150 300 600
bias
True Factor 0.00 -0.01 0.00 | -0.01 0.00 0.00 [ 0.01 0.00 0.00
Estimated Factor -0.37 -0.34 -0.32 | -0.22 -0.19 -0.17|-0.12 -0.11 -0.10
Plug-in -0.41 -0.36 -0.35 | -0.22 -0.20 -0.19 | -0.11 -0.11 -0.10
DGP 3: WB 0.27 026 -0.26 | -0.17 -0.16 -0.15|-0.11 -0.10 -0.09
hetero & AR-sieve+CSD -0.26 -0.26 -0.25 | -0.17 -0.16 -0.15|-0.11 -0.10 -0.09
hetero 95% coverage rate
Estimated Factor 75.0 72.6 639 | 8.0 855 844 | 8.5 90.3 91.0
Plug-in 80.9 87.9 839 | 86.8 89.3 92.1 | 88.9 91.1 92,5
WB 91.7 94.2 927 | 926 935 94.1 | 91.3 939 938
AR-sieve+CSD 93.7 921 904 | 93.6 943 94.1 | 94.1 951 93.6
bias
True Factor 0.00 0.00 0.00 | -0.01 0.00 0.00 |-0.01 0.00 0.00
Estimated Factor -0.64 -0.57 -0.54 | -0.41 -0.35 -0.31 | -0.28 -0.21 -0.18
Plug-in -0.45 -0.42 -0.41|-0.26 -0.26 -0.25|-0.14 -0.14 -0.14
DCP 4: WB 022 022 -022|-015 -0.14 -0.14|-0.10 -0.09 -0.08
hetero & AR-sieve+CSD -0.38 -0.37 -0.36 | -0.29 -0.26 -0.25 | -0.22 -0.18 -0.16
AR 95% coverage rate
Estimated Factor 52.2 44.5 292 | 723 T71.8 673 | 81.5 85.0 84.1
Plug-in 72.0 771 771 | 81.1  86.0 87.9 | 8.0 90.1 91.3
WB 82.8 79.4 68.7 | 89.0 88.8 86.1 | 89.6 924 91.3
AR-sieve+CSD 88.7 874 814 | 91.9 919 91.3 | 93.6 949 93.5

In DGP 3, both error terms are heteroskedastic. In DGP 4, the idiosyncratic error term is generated as the autoregressive
process of lag 1 for each variable and with heteroskedastic. For coverage rates, the results for estimated factors and plug-ins
are based on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile ¢ method.

AR-sieve + CSD recovers the size distortion better than the plug-in method in all sample sizes when
it comes to coverage rates. This is because there must be some variance effect when the bootstrap
method is used. In DGP 6, we allow for cross-sectional dependence as well as serial dependence in
the idiosyncratic error terms. The results follow a similar pattern to the findings of DGP 5. The
plug-in bias method replicates the bias better than bootstrap methods. However, it does worse than

AR-sieve+CSD bootstrap in terms of recovering the size distortion in the coverage rates. When
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Table 4: DGP 5 & DGP 6 - Bias and coverage rate of 95% ClIs for 3

N =50 N =100 N =200
T =50 100 200 50 100 200 50 100 200
Ty =150 300 600 150 300 600 150 300 600
bias

True Factor 0.00 -0.01 0.00 | -0.01 0.00 0.00 [ 0.01 0.00 0.00
Estimated Factor -0.37 -0.34 -0.32 | -0.22 -0.19 -0.17|-0.12 -0.11 -0.10
Plug-in -0.41 -0.36 -0.35 | -0.22 -0.20 -0.19 | -0.11 -0.11 -0.10
DGP 5: WB -0.10 -0.10 -0.10 | -0.06 -0.06 -0.04 | -0.04 -0.04 -0.03
hetero & AR-sieve+CSD -0.16 -0.16 -0.16 | -0.10 -0.10 -0.10 | -0.06 -0.06 -0.06

CSD 95% coverage rate
Estimated Factor 75.0 72.6 639 | 8.0 855 844 | 8.5 90.3 91.0
Plug-in 80.9 87.9 839 | 86.8 89.3 92.1 | 88.9 91.1 92,5
WB 88.7 86.2 79.5 | 92.7 92,6 90.0 | 94.2 935 93.5
AR-sieve+CSD 90.9 90.0 87.0 | 93.3 94.1 923 | 94.3 93.9 93.7

bias

True Factor 0.00 0.00 0.00 | -0.01 0.00 0.00 |-0.01 0.00 0.00
Estimated Factor -0.64 -0.57 -0.54 | -0.41 -0.35 -0.31 | -0.28 -0.21 -0.18
Plug-in -0.45 -0.42 -0.41|-0.26 -0.26 -0.25|-0.14 -0.14 -0.14
DGP 6: WB -0.08 -0.09 -0.08 | -0.06 -0.06 -0.05|-0.04 -0.03 -0.03
hetero & AR-sieve+CSD -0.23 -0.23 -0.24 | -0.17 -0.16 -0.16 | -0.12 -0.10 -0.10

CSD+AR 95% coverage rate
Estimated Factor 52.2 44.5 292 | 723 T71.8 673 | 81.5 85.0 84.1
Plug-in 72.0 771 771 | 81.1  86.0 87.9 | 8.0 90.1 91.3
WB 76.5 66.2 474 | 87.5 842 776 | 91.1 91.5 89.3
AR-sieve+CSD 86.3 80.0 73.5 | 91.0 89.8 87.1 | 93.2 93.2 92.6

In DGP 5 and 6, both error terms are heteroskedastic. In DGP 5, the idiosyncratic error term contains the cross-sectional
dependence. In DGP 6, we impose the dependence in both dimensions for the idiosyncratic error terms. For coverage rates,
the results for estimated factors and plug-in are based on asymptotic theory. The bootstrap coverage rates use the bootstrap
equal-tailed percentile ¢ method.

the time series dimension is as small as 50, the plug-in bias method performs even worse than the
wild bootstrap method, which is not valid in this design. Overall, the AR-sieve+CSD bootstrap

works well in correcting the distortion.
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5 Empirical Application

In this section, we apply the factor-MIDAS regression model to validate the presence of bias in an
empirical example. It is well documented that incorporating high-frequency indicators to forecast
a quarterly variable using the MIDAS regression model improves the forecast performance (e.g.,
see [Clements and Galvao (2008; [2009)), Aastveit et al.| (2017), Marcellino and Schumacher| (2010),
Andreou, Ghysels, and Kourtellos (2013), and |Beyhum and Striaukas| (2023)).

In this paper, we focus on nowcasting quarterly U.S. real GDP growth using monthly macroe-
conomic factors from 1984 Q1 to 2022 Q4 including great moderation period. We have divided
this period into two: the long period (1984 Q1 - 2022 Q4), which includes the COVID pandemic
period, and the short period (1984 Q1 to 2019 Q4). Our nowcasting model is similar to the model
in Beyhum and Striaukas (2023). Given the number of leading months, | = 1,2, 3, we write our

model as follows:

Dy K-I
yr = fo + Z piyi—i + B Z W(k—1)+1(0) fr—1-(j—1)/m + €t (18)
i=1 k=1-1

where y; is quarterly U.S. GDP growth rate. We denote common factors containing timely in-
formation about monthly macroeconomic predictors by f;_j/p. The number of leading months
represents a nowcasting horizon, denoted by h. For instance, [ = 1 indicates that we exploit infor-
mation of one leading month; hence, we nowcast two months away (h = 2). We use the exponential
Almon lag with two parameters defined in for the lag polynomial function. The quarterly U.S.
output is obtained from a FRED-QD dataset (for detail, see M. McCracken and Ng (2020)). As
U.S. real output is available in level in the dataset, we compute the growth rate in percentage, by
{In(GDP); — In(GDP);—_1)} x 100. We also include the lags of the growth rate in the regression.
The number of lags of the dependent variable is chosen by BIC, before the MIDAS regression. BIC
selects one lag in the long and three lags in the short periods.

To estimate the monthly factors, we utilize the FRED-MD datasetﬂ (for detail, see M. W. Mc-
Cracken and Ng| (2016)). We only consider the 74 macroeconomic variables available for the entire
period and exclude all financial variables. Using PCA, we extract two common factors in both
periods. The information criterion proposed by [Bai and Ng (2002)) (particularly, IC,) chooses eight

factors in the long period and five factors in the short period. Although the information criterion

"We use the ‘current’ version downloaded on October 3rd, 2023.
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chooses more than 2 factors, the two factors we extract explain more than 60% of the variability
explained by all the factors chosen by the information criterion proposed by Bai and Ng (2002).
Our primary goal is to verify the existence of bias in the estimators. Instead of focusing solely
on the forecasting performance of the factor-MIDAS regression model, we aim to examine the
behaviour of the estimators, particularly their 90% confidence interval. We present three sets of
confidence intervals, one based on asymptotic theory and the other two based on the bootstrap
method. We use two different bootstrap methods for resampling the idiosyncratic error terms in
the factor model: wild bootstrap and AR-sieve + CSD bootstrap, described in We also
rotate the bootstrap estimators, BT, with the rotation matrix H* as in GP (2014) and |Gongalves

and Perron, (2020)).

Table 5: Estimates in the long period (1984 Q1 - 2023 Q4)

h=2 | h=1 | h=0

0.90 0.83 0.99
Asymptotic 0.67 1.01 | 0.67 0.99 | 0.78 1.21
constant WB 0.71 098 | 0.69 0.95 | 0.73 1.28
AR sieve+CSD | 0.71  0.98 | 0.69 0.94 | 0.75 1.26

2.54 3.79 1.87
Asymptotic | 1.64 3.44 | 2.97 461 | 031 3.44
first factor WB 2.01 356 | 3.29 4.72 | 0.91 3.93
AR sieve+CSD | 2.13 354 | 3.34 4.80 | 0.90 3.39

0.04 0.36 -0.95
Asymptotic | -0.22  0.30 | 0.08 0.65 | -1.47 -0.43

second

factor WB -0.17 037 | 0.14 0.75 | -1.62 -0.01
AR sieve+CSD | -0.12 0.38 | 0.16 0.77 | -1.63 -0.21

-0.30 -0.30 -0.58
Asymptotic -0.54 -0.06 | -0.52 -0.09 | -0.87 -0.28
Yt—1 WB -0.49 -0.12 | -0.44 -0.14 | -1.25 -0.26
AR sieve+CSD | -0.49 -0.12 | -0.43 -0.14 | -1.22 -0.25

The interval based on the asymptotic theory is obtained by adding and subtracting 1.645
times the heteroskedasticity robust standard errors. The confidence intervals based on
bootstrap methods are obtained with equal-tailed bootstrap intervals with a bootstrap
number, of 4999. WB indicates that we use wild bootstrap and AR sieve + CSD indicates
that we use the bootstrap algorithm described in

22



In we present the confidence interval for the point estimates in the long period, 1984
Q1 - 2022 Q4 for each nowcasting horizon, h = 2,1, and 0. We also report the estimate associated
with each parameter on the top of the three confidence intervals. The confidence intervals of the
intercept coefficient are similar, implying that there is no bias for the intercept estimator. However,
a bias does exist in the estimators associated with the factors. For example, the point estimate
associated with the first factor for horizon h = 2 is 2.54. The confidence interval of this estimate
is centered around 2.54, but the bootstrap interval shifts to the right, suggesting a negative bias.
The results are similar for the other horizons, h = 1 and 0. The second factor is not significant in
nowcasting the GDP growth rate when we are two months ahead. However, it is significant if we
are one month ahead (h = 1), or we are at the end of the quarter (h = 0). We can also confirm
that there exists a bias in the estimator associated with the second factor. When h = 1, the result
implies a negative bias, whereas when h = 0, there exists a positive bias, shifting the interval to the
left. Comparing the two bootstrap methods, there is a small change in the bootstrap confidence
intervals of the estimators associated with the two factors. However, the difference is not huge,
indicating that the serial and cross-sectional dependence in this example may be small.

In we present the results after excluding the COVID pandemic period. The results
are similar to those shown in When using the bootstrap method, the confidence intervals
associated with the factors shift. However, the bias does not have a significant impact on the
estimates for the lags of the dependent variable. Additionally, it is worth noting that as we exclude
the COVID period, the sign of the estimates associated with the two factors is reversed. Previously,
the slope coefficient for the aggregated factors was positive, whereas it becomes negative without
the COVID period. This suggests that monthly information during the COVID period has a

considerable influence on nowcasting the GDP growth rate.

6 Conclusion

In this paper, we derive the asymptotic distribution of the estimators in the factor-augmented
MIDAS regression models. We find that there exists an asymptotic bias arising from the fact
that the factors are latent and must be estimated. We show that the bias depends on the serial
dependence as well as the cross-sectional dependence of the idiosyncratic error term in the factor

model, because MIDAS temporally aggregates the factors and their lags. We propose two inference
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Table 6: Estimation result of long period (1984 Q1 - 2019 Q4)

h=2 h=1 h=0

0.87 0.92 0.88
Asymptotic 0.70 1.03 | 0.79 1.06 | 0.75 1.02
constant WB 0.76 1.03 | 0.84 1.09 | 0.77 1.02
AR sieve+CSD | 0.79 1.05 | 0.86 1.11 | 0.79 1.04

-1.10 -1.34 -1.27
Asymptotic -1.48 -0.73 | -1.67 -1.01 | -1.53 -1.00
first factor WB -1.52 -0.92 | -1.78 -1.20 | -1.61 -1.12
AR sieve+CSD | -1.56 -0.98 | -1.83 -1.27 | -1.66 -1.16

0.09 -0.14 -0.01
Asymptotic -0.67 0.84 | -0.35 0.07 | -0.58 0.56

second

factor WB -0.13 0.26 | -0.40 0.03 | -0.23 0.14
AR sieve+CSD | -0.17 0.24 | -0.48 0.02 | -0.28 0.13

-0.11 -0.19 -0.17
Asymptotic -0.24 0.03 | -0.31 -0.06 | -0.30 -0.04
Yt—1 WB -0.26  0.00 | -0.33 -0.10 | -0.31 -0.06
AR sieve+CSD | -0.26 -0.01 | -0.35 -0.11 | -0.31 -0.06

-0.06 -0.09 -0.04
Asymptotic -0.24  0.12 | -0.24 0.05 | -0.17 0.09
Yt—2 WB -0.24 0.08 | -0.27 0.03 | -0.17 0.08
AR sieve+CSD | -0.24 0.08 | -0.27 0.02 | -0.18 0.07

-0.16 -0.14 -0.15
Asymptotic -0.29 -0.02 | -0.26 -0.03 | -0.26 -0.03
P3 WB -0.28 -0.04 | -0.26 -0.04 | -0.26 -0.04
AR sieve+CSD | -0.29 -0.04 | -0.27 -0.05 | -0.26 -0.04

The interval based on the asymptotic theory is obtained by adding and subtracting 1.645
times the heteroskedasticity robust standard errors. The confidence intervals based on
bootstrap methods are obtained with equal-tailed bootstrap intervals with a bootstrap
number, of 4999. WB indicates that we use wild bootstrap and AR sieve + CSD indicates
that we use the bootstrap algorithm described in

methods that account for this bias: an analytical bias estimator based on the formula derived and
a bootstrap method. Both inference methods are robust to serial and cross-sectional dependence.
Although our simulation results supports the theoretical results, the bootstrap method performs

better in terms of correcting the size distortion in the coverage rates. We also apply the factor-
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MIDAS regression model to nowcasting quarterly U.S. GDP growth rate using monthly macroeco-
nomic factors. Our empirical results imply that there exists a bias in the estimates associated with
the estimated factors.

Our results can be extended to construct forecast intervals, similar to |Goncalves, Perron, and
Djogbenou| (2017), where they construct it in the context of the factor-augmented regression models
without mixing the frequencies. By denoting by 9741 = g(Fr, &) the forecast of yp,; based on

information up to time 7', we can decompose the forecast error as:

s = yr = —er + <=2V ) o SHOVR () ~ HEAO) + o).
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A Primitive assumptions

This section delivers the primitive assumption for asymptotic theory. The factor-augmented MIDAS
regression involves two frequencies, thus we use two time indices: t, = 1,...,Ty denotes the high-
frequency time index and t = 1,...,T denotes the low-frequency time index. Particularly, we use
a subscript h to denote high-frequency time index (e.g. s; also denotes the high-frequency time

index).
Assumption A.1 (Factors and Factor Loadings)

(a) fi, are stationary with E||f;, |* < M and ﬁZZLH:l fen I, 2, Y¢ > 0, where ¥¢ is a non-

random r X r matriz.

(b) The factor loadings N\; are either deterministic such that |\;|| < M, or stochastic such that

E|\||* < M. In either case, NA/N 2 $p > 0, where Sy is a non-random matriz.
(c) The eigenvalues of the r x r matriz (XaXy) are distinct.

(d) f'f/Ty =1, and AN'A is a diagonal matriz with distinct entries.
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Assumption A.2 (Time and Cross Section Dependence and Heteroskedasticity)
(a) E(ei,) = 0,Eleiy,|* < M.

(b) E(€ity€js,) = Tijtnsns |Uz'jthsh| < 6y5 for all (th,sn) and |oj,s,| < Tv,s, for all (i,j) such

that ]{7 Zzg 1005 < M, TH Zth sp=1 Tthsn <M, and N%ﬂH Zth,sh,i,j ‘Uijythsh‘ <M.
4
(c) For every (ty, sp), E‘N 1/2 Zl 1(eit, €, — E(ei,thei,sh))‘ < M.
(d) E(eis,ejt,) = 0ij and E(e;t, €1, k) = 0k for all t and k.

Assumption A.3 (Moments and Weak Dependence Among {f:, }, {\:i} and {e;y,})

N T
(a) s <]{[ Zi:l H\/% ZthHil fthei,th

2
> < M, where E(fi,eiz,) =0 for all (i,t).

2
(b) For each ty, E H TN Esh 1 Zfil fs, (€it, €5, — E(e’i7th6’i75h))H <M.

2
(c) E Hm Zth 1 fththAH < M, where E(f, Neit,) =0 for all (i,t).

2
(d) E <TH Zth 1 H\/% Zi\; Ai€it), > < M, where E(Neiy,) =0 for all (i,tp).
(e) As N = 0o, % SV, Z;V:1 AiNseit,ejn, — T 2,0 and T = limy_o0 Var (\;—N SN )\ie@th).
Assumption A.4 (Serial Dependence between {ft, }, {\i} and {e;4,})

P . :
(a) ﬁ 23;7:1 fenfl, _x = gk, where Ep is a non-random r x v matriz.

2
(b) For each ty, and all k, E H TN ZSh 1 Zfil fon (€it) €05, —k — E(ei,thei,sh—k’))H <M.

(c) E H TNT Zth 1 fthe;h_kAH < M, where E(f, Neit,—r) =0 for all (i,ty) and all k.

. A Ney,
(d) As N — o0, Zf\il Z;Vﬂ AiNj€it, €t —k — Tk 2,0 and Ty, = limpy_yoe Cov ( \/6%17 \e;% k)

Assumption A.5 (Weak Dependence Between Idiosyncratic Errors and Regression Errors)

2
(a) For each t, E ﬁzfﬂ S es(€itjymeis—jjm — B(€it—jmeis—jm))| < M for j =
0,....,m—1.
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2
(b) EHﬁz;‘le Zf\il )\iei,t,j/metH < M, where E(\ie;y_j/met) = 0 for all (i,t) and j =
0,...,m-—1.

Assumption A.6 (Moments and CLT for the Score Vector)
(a) E(e;) =0 and E |e;|* < M.
(b) E ||gomg||4 < M and % Zle ga,tg&,t Loy > 0 where Gat = 0g(Fy; o) /Ocr.
A 1 T d 1 T 2
(c) As T — oo, i Y i1 9aet — N(0,9), where E Hﬁ Dot ga,tStH <M
and Q = limp_,oc Var (ﬁ 23;1 ga,t6t> > 0.

Assumption [A] are standard assumptions on the factors and the factor loadings in the fac-

tor analysis. Additionally, we assume that the factors are stationary. This is to allow ¥y =

plim ﬁ ZZLHzl fu, fi, = plim % Zthl ft—j/mft/,j/ma for all j. Assumption|A.1t(d) is one of the iden-

tifying restrictions from Bai and Ng| (2013)). By imposing this assumption, the rotation matrix Hy
is a diagonal matrix of +1, where the sign is determined by f’f /Tr. However, since the true factors
are unknown, we still do not know the sign of the rotation matrix.

Assumption and Assumptioncan be found equivalently in GP (2014) (their Assumption
2 and 3, respectively). In Assumption we allow weak cross-sectional and serial dependence in
the idiosyncratic error terms. In Assumption we impose some moment condition between the
factors, idiosyncratic error terms, and the factor loadings. We also allow some weak dependence
among them. Due to the MIDAS structure, we also allow some serial dependence between them in
Assumption This assumption is new in the context of the factor-augmented regression models.
Without MIDAS structure, Assumption is sufficient. However, as the factors are temporally
aggregated with MIDAS structure, we introduce Assumption

We impose some weak dependence between idiosyncratic error terms and the regression errors in
Assumption This Assumption is equivalent to the Assumption 4 in GP (2014). Assumption
imposes some moment condition on {&;} and the score vector, g, Assumption (b) requires
that we can apply a law of large numbers on {ga.9;}. By introducing Assumption (c), we
can apply a central limit theorem on {g,c:}. Assumption and are same assumptions in
GP (2014).
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B Proof of results in

In this section, we prove the asymptotic distribution of NLS estimators in [Theorem 2.1| and [The-|

the consistency of the variance-covariance of the cross-sectional average of the factor
loadings and idiosyncratic error term across time for the plug-in bias estimator. To prove the

asymptotic distribution, we use the following lemmas.

Lemma B.1 L Y7 c/(F(0) — HFE(0)) = op(1).

Lemma B.2 If VT /N — ¢, where 0 < ¢ < o0,
(@) = s (Fimgym = HE ) (fijm = Hfrjpm) = V" HTHV ™! 4 05(1),
() = it (Fijpm = HFrjym) Fioym = Hfiipm) = eV HT L HV ™! 4 0,(1),
(¢) Tz S im Hfrjym(Fejpm = Hfrjm) = cHTQ'V ™2 4 0,(1),
(d) =Sy H oty (Fogpm = I, = 0Q D QV =2 4 0y(1).

Lemma B.3 If VT /N — ¢, where 0 < ¢ < 00,

(a) ﬁ Zthl(Ft(e) - HFt(e))(Ft(g) — HF(0))'

= oV 1Q{ Ty wn @) wi(8) + S Ty wn(O)Tk-rwn(8) } @'V 4 0,(1),

() L 5L (Fi(6) — HF(0))(HF(6))
=c {Zk Vw0 H + 35, Zl;ﬁk w (6 )Qk—lwl<9)} TQ'V=2 + 0p(1).
Note that we write F}(0) = 25:1 w,(0) fe—k/m> where wy(0) = diag(wg,1(01), - .., wr-(6;)) is a

r X r diagonal matrix. We also define dn7, = min(\/N .V 1rr). We first prove [Theorem 2.1| and
then we prove Lemmas -

Proof of [Theorem 2.1, As the NLS estimators & maximizes the objective function Qr(a) =

_% tT=1[yt - Q(Ft, a)]Q, we have

ST 1S~ - 1 &
Ta@—a)=—|=)» H(F,« — s(F,a), (19)
25 ] oY
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where a7 is the intermediate between & and o and H(F}, ) is a hessian matrix and s(F}, a) is a
score vector. For deriving the asymptotic distribution, we analyse the convergence of each term.

We write the term with a score vector as follows.

1 & - 1 & N _
— s(F,a)=2—= [e+ B H YHF,0) — Fi(0))]ga(F;, o
\/thl ( t ) \/thl[t t( ) t( ))]g ( t )
1 & . _
- 2ﬁ ;[et + B H Y (HF,(0) — F,(0)(Poga(Fy, o) + Py,

where where ®¢ = diag(Ho, I,) and Hy = plim H and P, is a (r + p) x 1 vector such that

Fy(0) — HE,(0)

P = ,
<8Ft( )H 1 8139@)) ﬁ

with apéée)/ = diag (8F3;§91)7 . 8F3;)£0’")) is a r xr block-diagonal matrix. k-th block is 8@7t(6j)/80k,

which is a p; x 1 column vector, for j = 1,...,r. Under Assumption [A.6] and [Lemma B.T] we have
ﬁ Zthl et9a(F}, ) 4 N(0, 2o2®(). The remaining term drives the bias in [Theorem 2.1f As the

parameters « contain the slope coefficients, 8 and the weighting parameters, 6, we take a look into

each term. With respect to 3, the remaining term is as follows:

t=1
T T
= = | 7 XoE0) ~ HEONE0) ~ HEO) + = S HEO)(F(0) ~ HE@) | 5775
i VT =
K
= ¢ |ViH Zwk ka —|— Zzwk Fk Wy 9) HV™
k=1 k=1 Ik
K ~
+ Zwk YHwy(0) + ZZwk )Qr—wi(0) rQ'v->2 plim(3)
k=1 k=1 12k
= —cBg + 0p(1), (20)

where plim(3) = H~" . The second equality follows by applying Similarly, with
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respect to #, we have

T ~
1 8Ft(9)/ —1" pprrr—1 n
—> H™"pB'H ' [HF(0) — Fi(0)]
VT &0
T
=—Hp Z —HFE,O)H "B
K K
— —cplim(F)o |VIH Ok O) .., (0 + >3 QwkO) o) b v
00
k=1 k=1 l#k
Owg (6 K K .
80 k—wi(0) » TQV™7| plim(3)
k=1 =1 I£k
= —cBy + 0,(1), (21)
~ /
where F} 0(0) = (%, cen %@)) . To apply the lemmas, we use the Hadamard product such

that (Ao B);j = Ai; Bi;. By applying Hadamard product, we have 6F5((7, HYB=HYB0F, 0(0)
to obtain the first equality. Then, we apply for the second equality. Finally, we have
ﬁ ST s(Fy ) 4 N(—cBg, ®oQ2®()). Next, we derive the term with Hessian matrix. First, we
rewrite the first term in as follows:

T T = T = =
1 - 1 - - Pg(Fa) 1 9g(Fy, ) 9g(Fy, )
= H(F,a)=— 'H™Y(HF,(9) — Fy U : .
T ; (Fi,0) = 7 ; [Et +5 (HE(©) t(e))] dadal T ; dax ool
Under Assumption |[Assumption A.6|and [Lemma B.1, + Zt 1 ta gagg o) = = 0p(1). We can also show

that — 1 Ethl BHY(F,(0) — HFAQ))%&?) = 0p(1). Finally, for the second term, we have

T
Tz 9(Fi, o) Og(F %) _ $458) + 0,(1) (22)

oo oo’

where ¥ = F [Mgé’) %] by replacing M with QDW + P,;. Then, by [Lemma B.2 we

have = Zt:l 9a(Fy, @) P} = 0,(1) and # thl PP} = 0,(1). By plugging the terms, (20), (1)), and
into (T9), we have VT (& — a) & N(—c(®oL®}) !By, &5 5108105 "). m

Next, we prove Lemmas we used to prove We can obtain the by
directly applying the proof of Lemma 1.1 in GP (2014) (the only difference is that we use the high-

frequency and low-frequency time indices in our context). The proofs for (a) and (c) in
are also similar to the proof of Lemma A.2, (a) and (b) in GP (2014). Therefore, we only show the
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proof for (b) and (d) in
Proof of - (b).

First, we use the identity for the factor estimation error in GP (2014) such that fth - Hf;, =
VU (Avy, + Agy, + Asyy, + Aayy), where Avy, = 22 ST o v, Aog, = 72 S0 fo,Cotns
Asy, = TH Z FouNsntn, and Ay = TH Z fsEspt,- Each term in A;;, for i = 1,2,3,4
denotes the following: ~s,¢, = FE (% Zfil e¢7shei,th>, Copty, = %Zfiﬂei,shei,th — E(eis,eit,)),

ANey ANe
— / h / Sh
Nspty, = fsh N and gshth f

notation, we have

= N¢,s,- Under this identity and using the low-frequency

T

1 - -

7Z(ft—j/m_Hft—j/m)(ft—l/m Hft l/m \/*Z[ Alt j/m+A2t ]/m+A3t j/m+A4t j/m)
t=1

3

X(Artt/m + Azp—tym + A3 p—1ym + A4,t,l/m)’f/’1] ,

for j =1,...,m—1. We analyse the convergence limit of each term, respectively. The proof is similar
to the proof of Lemma A.2 - (a) in GP (2014). By applying the Cauchy-Schwarz inequality, we have
IS v sl ] < (ElAramsml?) " (3 S Areynl?) ™ = 0,1/). by
Assumptions [A.1{and [A.2] This implies % Z?zl Al,t—j/mA/Lt—l/m = 0p(1). We can also show that
|4 55 sy | < (S Aigl®) (3 S WAzl ?) " = 00N 1553,
by Cauchy-Schwarz. We also use %Zf:1||A2,t_j/m|]2 = Op(N_léx,QTH) by Assumption and

Zsh N fs—Hfs|? = (5&%}1) in Bai and Ng|(2006). Again, this implies % Z;[:l A2¢*J’/mA/2,t—l/m =

op( ). Similarly, we can show all the terms are negligible, except the term % Zthl Ay imAL m
In fact, this term is O,(1/N), which is non-negligible when it is multiplied by VT under our as-

sumption, vT' /N — c. To see this, we first rewrite the term as follows:

L T LT[ In " ,
= , / _ 1 i . 1 -
T ;AS,tJ/m 3t=l/m — p z : (TH t§:1:(fs Hfs + Hfs)”s,tg/m) (TH § (fs—Hfs+ Hfs)ns,tl/m>

t=1 s=1

= bs3.1 + b3z + bz 0 + b333

The first term b33 1 is bounded by <ﬁ ZsTiIles - Hsz2> (ﬁ Zthl ngl \nsi_j/mn&t_l/m\) by
applying Cauchy-Schwarz inequality. This is Op(NN _15&2&{) by ﬁ Zthl ZZLH:1 sy, t—; /m|2 =
Op(N~1) under Assumption Similarly, the second term is bounded by Cauchy-Schwarz such

that bsgz < (7 S [ HAG = H5)|)) (v S0 S8 g pmasyml) = Op(N71RE).
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/ ‘e, . e A ’
Then, the final term is b33 3 = H (%) [r_lp Z?:l (A t&””) ( tﬁj\/,m >} (%) H' = O,(N71) by
Assumption [A.3] Thus,

\/T 1 d Alet—j/m 6;ﬁ—l/mA
T = —H|= H=cHT';_|H 1
VThss 3 N T;( JN > JN cHT;_1H + o0p(1),

where we use % = I, by Assumptions |A.1t(d) and |A.4t(d). Finally, we have \F S 1( ])/m —
HE) = HI™),) = VVHT  HY "+ 0,(1). m

Proof of - (d). The proof is similar to the proof of Lemma A.2 - (b) in GP
(2014). By using the identity we use in the proof of B.2}(b), we have

T
Z Hf_ l/m ft j/m — Hftfj/m)/: fzft l/m Alt j/m+A2t y/m+A3t ]/m+A4t j/m)v
= VTH(dp1 +dps +dpz +dpa) V"

We show the convergence limit for dy;, for ¢ = 1,2, 3,4. We can show that all the terms except dy4
is negligible. For example, df; = Op((S]QlTHT_l/Q) + O,(Ty"). To show this, we first rewrite d; as
% 23:1 ft—l/m (ﬁ ZsTﬁl(fs - Hfs),’Ys,t—j/m> + % 23:1 ft—l/m (ﬁ ZsTiﬁ fé’Ys t— j/m) H'. The first
term of dyy is O (5_1 T-1/2) by applying Assumptions and LZSh fs — Hf|l? =
Op(ég,gf ). The second term is O,(Tj;") by Cauchy-Schwarz 1nequahty and Assumptions and
A.2l We can also show that ||dss|| = p((TN)_l/Q) by showing -+ ﬁ 5:1 HT thl ft_l/m(sﬁt_j/mH

Op((TN)™!) under Assumption (b) The third term is also bounded by Cauchy-Schwarz in-
equality such that ||dgs]| = O,((NT)~'/?) and by applying Assumption (c) Finally, we de-

compose the last term into two parts as follows:

1 & 1 & 1 & 1 &
f4 = f ;ft—l/m (TH ;(fs - Hfs) gs,t—j/m> + f ;ft—l/m (TH ;fsgs,t—j/m> H

=dpgn +dpa.

By rearranging the second term, we have d49 = \/ﬁ <% 23:1 ft—l/mft/_j/m) (\/T ZTH A’esfs’) =
Op(1/(v/THN)) by Assumptions m and [A.3) -— . We can also rearrange the terms in the first
term and write it as follows:

T

LT
dps1 = T tz_;ftl/m

s=1 H s=1
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This is Op(1/N) under our assumptions. By using ﬁ ZSTHI A]\?S (fs—Hf,) = + ([T +0,(1)Q VT,
from the proof in GP (2014), we have

VTHdgs, = < th 1ymfi- ]/m> <\/T(F+Op( ))Q/V1> =cQ;_iIQ'V ™"+ 0,(1)

Thus, VTdy1 V™' = cQjTQ'V 2 +0,(1), where Qj_y = = S fiijmfit/m = T S Fefem G-

proof of - (a). We write the equation as follows:

1 T ’
Nia ; 0))(Fi(0) — HF(0))
:\/1? ]Z(:)w](e)(ftg/m Hft]/m):| |:]Z% ( )(ft j/m Hfy ]/m)]

1 -
72(]015 —j/m — Hft j/m)(ft j/m_Hft ]/m),] (9)

T
1T Z(ft —j/m — Hfi ]/m)(ft l/m — Hft—l/m)/] wl(e)
7=0 1#j t=1
q q q
=cV QY wiOT + D> wi()Ty_wi(0) ¢ V™' + 0p(1).
Jj=0 J=01#j

By applying the results of Lemmas (a) and (b), the result follows immediately. m

33



proof of - (b). Similar to previous proof, we write the equation as:

T
= >" HE(0)(F6) — HE(6))
t=1
1 | < : : /
= = wj(e)Hftf'm) wj(e)(ftf'm_Hft*'m)
Nix J;O i/ JZ:% i/ i/

7=0
q q A )
+Zzwj(9) 7TZHft—l/m(ft—j/m —Hfi jm) | wi(0)
J=0 I#£j t=1
q q q
=cq D wiOH + Y wi(0)Qjwi(6) p TQV ™2+ 0y(1).
=0 =0 1%]

By applying Lemmas [B.2}(c) and (d), the result follows. m
Next, we prove and For proving we first prove when there is no

cross-sectional dependence (only serial correlation) in the idiosyncratic term in the factor model,
and then we prove when the cross-sectional dependence is added. Note that when the error term
is only serially correlated, the estimator for I'y is I % Zfi 1 :\is\;éi,théi,th,k.

proof of [Theorem 2.2}
If the idiosyncratic term is only serially correlated, by applying the proof in Bai (2003), we can

write the estiamtor as follows.

Ty N

5 1 1L .
IVES 7N(TH — k) t Zk;rl N ;(ei,thei,th—k — €4, Cit—k T ei,thei,th—k))\i)\;
h
1 T 1 N
_ —1y/ . . N/ —1
= Op(l) + (H ) m t ZIC:+1 N Zz; ez,themh_k/\l)\i H™ .
h= =

i 1 T N /~ =~
Under|Assumption A.2- (d), we have E(e; 4, €i+, —k) = 04ix and NTy=Fh) ZthH:kH > im1 (€t City—k—

€it,€it,—k) = 0p(1). Therefore,

TH N

1 1 o -
Ty — k 2 N Z €ty City—kAiAi = L'k,
tp=Fk+1 i=1

where I'y, = limy_o0o %Zi\il i\ (THl—k: Zz;szH éi,théiﬂgh_k). When the idiosyncratic term is
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serially and cross-setionally correlated, the proof is similar to the proof for Theorem 4 in |Bai

and Ng| (2006). Under |Assumption A.2[ - (d), we have o1 = E(eis,ejt,—k)- Let Gijp =

1 T, ~ ~ 1 n n / . T
T ZthH:kH €ty Citp—k and [y = =570 ijl 0ijkAiNj. By the definition, I'y; = limy, 00 I -

Let [y = %Z?:l Z?:l &Z-M)\Z-)\;. Then, we can write
I, —H 'TWH '=Ty—H YT, H ' +H Y (Thr— -1 - — -1
k k =T} .k + (Topg —Tpp)H "+ H Ty —Tp)H .

Since I'y, is the limit of I'y, 1, we have I';, , —I';, — 0. The remaining part to show is that fn’k—ka LN
0if n/N — 0 and n/Ty — 0, and T}, — H‘llfmkH_l 2y 0. For the first part, we rewrite it as

follows:

_ 1 n n ~
Do =T = Z Z(Uij,k — Tij k) N

i=1 j=1
1 n o on 1 T
~n >0 T — k D (CitnCipn—k — Tir)NiX]
i=1 =11 tp=k+1
1 n o n 1 T
T Z Z Z €i,tp, (Cj,th—k - 5j,th—k))\i>\9
né—~Tyg—k ~
i=1 j=1 th=k+1
1 n on 1 Ty
T Z Z Z ej:th*k<ci,th - El,th))\z)\;
ni:l — TH—kt _—
J n=k+1
1 n o n 1 T
T Z Z T — k Z (Cisty, = City)(Chtn—k = City—k) NN
i=1 j=1 th=k+1
=T+ IT+IIT+1V,

where we obtain the second equality by using the decomposition such that €; 4, €; ¢, —kx = €i 1, €, —k—
€ty (Citn—k — Citn—k) — €jtn—k(Citn — City) + (Cisty — Cist,)(Cjity—k — Cjt,—k). We can show that I is
O,((Twr — k)~'/2) since it is zero mean process. For, I, by using c¢j s, — &, = (H™ Y Nj = N\j) fi, +
)\;-H_l(Hfth — fth) and we can decompose it into two parts. Then, following Bai and Ng (2006)),
we have II — 0 if \/n/Ty — 0 and n/d?VTH — 0. Similarly, we have I/ — 0 as n/5]2VTH — 0.

Finally, for IV, by Cauchy-Schwarz inequality, we have

) Ty ) n 2 1/2 . Ty . n 2 1/2
1TV < > l= D (i, — G D= D (k= Eank)A
T =k th=k+1 vni T —k th=h+1 Vi
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By using ¢; ¢, — Cit, = (H=1)\; — Xi)’]‘:th + )\;H_l(Hfth — fth), we have

1 Ty 2 1 Ty T 2
2 -1/ Y\
Z Z Cin — Cip)A|| <2 > Al ‘ZMH Ai = Ai)
T =k, 4 ‘f Ta =k, o2 Vi

() e o

tp=k+1

The first part — 0 as v/n/T — 0 and the second part — 0 as n/Ty — 0. The last remaining term

is fk — H‘llfn,kH_l. We can rewrite this term as follows:

n n
fk — H_llf‘n’kH_l = %ZZ&U”C 5\ 5\ _1,)\1)\;H_1)
i=1 j=1
1 = — - ) - ,
= =3 (Gijk — oijm) NN — HUNNHTY Zz%k (NN, — HTV NN H
i j=1 =1 j=1
=I1+1I.

Then, I — 0 using the fact that it is zero mean process. For the second part, we can write as:

Z%ZZ%@ H "))\ + ZZ%)\H (Nj—H YN =a+b.

i=1 j=1 i=1 j=1

; _ —1/2 2 _ —1/2 —2
Then, a — 0 since a = Op(Ty '") + Op(0y7,,) and b — 0 as b= Op(T / )+ O0p(On7,,)- ™
The proof for Proposition is straightforward by applying

C Proof of results in

In this section, we first deliver the bootstrap high-level conditions under which our bootstrap
data generating process yields a consistent bootstrap distribution. Our bootstrap data generating
process (DGP) is similar to the one proposed by GP (2014). Let {ej, = (ej;,,.--,en,, )} be a
bootstrap sample from {é;, = (€14,,...,€ny,) }, Where &, = X;, — ]\fth are the residuals from
the original panel dataset. {e}} are the resampled bootstrap residuals from {&; = y; — g(Fi;&@)}.

Using these two bootstrap samples, {e}, } and {e;}, the bootstrap data generating process (DGP)
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is as follows:

X, :Afth—}—efh, fortp, =1,...,Ty,

yr = Bo+ Bl E(0) +eF, fort =1,...,T.

We can obtain the bootstrap estimators by following a two-step process that is similar to the
procedure used in the original sample: in the first step, we estimate the factors from a new bootstrap
panel dataset such that X; and denote them by ft*h, then in the second step, by regressing y; on
1 and Ft*(é), we can obtain the bootstrap estimators. We denote these estimators by &*, which
are the analogues of NLS estimators from the original sample. Below conditions are our bootstrap

high-level conditions. The conditions are very similar to those of GP (2014).

Condition C.1* (Weak Time Series and Cross Section Dependence in ej, )
(a) E*(efy,) =0 for all (i,tp).
* * * N * *
(b) TH Zth 1 Zsh 1 19012 = Op(1), where 7%, = E (ﬁ 2i=1 ei,thei,s;L)'
‘2

T * N * * * (% *
(C) T2 Zth 1 Zsf 1 E \/1N Zi:l(ei,thei,sh —FE (ei,thei,sh)) = Op(l)

Condition C.2* (Weak Dependence Among fth, i, and € th)
(a) TH Eth 1 Zz:lzl fshﬂhry:hth = Op(l)

2
* N 7 * * * (% *
(0) 2 S0 B || e S0 S o (€, = BY (el l))| = 000,

2
(c) B \/mZth L fu e € = Op(1).
- 2
(d) ﬁZZ;LHﬂE* ﬁZf\; i€y, = Op(1).

Ae e A ~ ~
(e) TH Zth 1 ( th) <:/@V> —I' = 0y (1), in probability, where T’ = ﬁ ZZLHzl Var* (\FA’eth)
0.

Condition C.3* (Serial Dependence among fi,, Ai, and € ,)

(a) TH Zth BT

~ 2
T S S (€€ — B (€, €)= Op(1) for all k.

(b) E*

ﬂzth 1fth€t; kAH (1) for all k.
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Aer e*/7 A ~ . . ~ "
(c) ﬁ ZZ;LHZI <\/]i\’;> ( t’\b/ﬁk >—I‘k = op+ (1), in probability, where ', = ﬁ ZZLHzl Cov ( R
0.

Condition C.4* (Weak Dependence Between e}, and e}

2
T * T N %[ % * %[ % * .
(a) % Zt:l E /7;’N ZS:]_ Zi:l €s (ei7t7j/mei,37j/m - F (ei,tfj/mei,sfj/m)) = Op(l) for j =

0,...,m—1.

- 2
(b) E* ﬁZle Zf\;l )‘iezt—j/mng = Op(1), where E(G;‘,t—j/m) = 0 for all (i,t) and j =
0,...,m-—1.

Condition C.5* (Bootstrap CLT)
(a) B*(e) = 0 and 4 X0, B |eif” = 0,(1).

(b) Q‘lﬂﬁ Zthl Jo tE} x N(0,I4p), in probability, where E*

1T o P 0,(1) and
ﬁztzl Ja,t&y = p( ) an
oy = 09(Fy; ) /00, and = Var* (4 S0 Gaset) > 0.

Condition C.6* (Bootstrap Consistency)
(a) plim Q = ®oQ®), where Q@ = Var* (ﬁ Zthl gmtsf) and o = 9g9(Fy; o) /dar.

(b) plimT' = HoI'HYy and plimT';_; = HoT;_, H},.

Conditions through are the bootstrap analogues of Assumptions to in Ap-
pendix [A] Conditions are similar to the bootstrap high level conditions in GP (2014).
The mean of bootstrap residuals are required to be zeros for all (i,¢,) and ¢, which implies that
we need to recenter the residuals when we resample them. Unlike in GP (2014), since our bias
contains the serial dependence, we impose weak serial dependence among fth , \; and é;th in Con-
dition Note that since fth and \; are fixed, serial dependence in the factors can be implied
by restricting the serial dependence of e;, . Condition is also similar to GP (2014), where we
restrict the dependence between two bootstrap residuals. Condition |C.5%implies that we can apply
a central limit theorem on the score vector, g :cf. In Condition we provide conditions for
consistency of the bootstrap distribution. In Condition (a), Q denotes the bootstrap variance

of the score vector in the bootstrap world and it is a bootstrap analogue of 2. It implies that the
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bootstrap variance is rotated with a block diagonal matrix, ®y. This is because the score vector is

/
Jat = (Ft’ (0)H', B’ 81;,59(,0)) is a rotated version of g, ¢, where the rotation is given by ®(. Similarly,

[ and f‘j_l, defined in |Condition C.2*| and |Condition C.3*| in |Appendix C|, are the bootstrap ana-

logues of I and T'j_;, respectively. Condition imply that it is crucial how we mimic the error
terms of the MIDAS regression and the idiosyncratic factor error terms in the bootstrap world.
Moreover, in our context, since the bias depends on both serial and cross-sectional dependence of
ey, , the idiosyncratic error term in the bootstrap world should mimic the dependence in the time

series and cross-sectional dimension.

Remark 1 Note that &* is obtained by regressing yi on the temporally aggregated version of the

lags of the bootstrap estimated factors, F't*(é) The bootstrap estimated factors, ft*, consistently

FERA
Ty N7

estimate the rotated version of true “latent” bootstrap factors, H*ﬂ, where H* = V*~1
where V* is the r x r diagonal matriz containing on the main diagonal the r largest eigenvalues of
X*X* /NTx, in decreasing order. This matriz is the bootstrap analogue of the rotation matrixz in
the original sample, H = V‘“;—JNTA. The indeterminacy of the rotation matriz is not a problem in
the bootstrap world, as H* does not depend on the population values. Moreover, H* is asymptotically

equal to Hf = diag(£1), where the sign is determined by the sign of f* f/Ty. This implies that

the bootstrap factors are identified up to a change of sign.

Remark 2 NLS estimators of bootstrap DGP rotate due to the rotation in the factors in the boot-

strap world. Note that we can rewrite y; as follows.
yi = Bo+ BLH*VER () + BLH TN HF(0) — FF () + e = g(F)50) + &,

where g(Ff; &) = Bo + B H* FF(0) and & = B{H*Y(H*F,(0) — FF(0)) +¢f. Thus, &* estimates
(®*)~ta, where ®* = diag(H*, 1) is a block diagonal matriz. (®*)~ & are the rotated version of
NLS estimators in the original sample. As H* is asymptotically equal to H}, (®*)"1a is equal to

(@) ~La, where ®f = diag(Hg, I,), and (®f)~1a is the sign-adjusted version of é.

Lemma C.1 Let the Assumptions [A.T{A.5 in [Appendiz A hold and consider any residual-based

bootstrap scheme for which Conditions are verified. Suppose VT/N — ¢, 0 < ¢ < 00.
In addition, let the two following conditions hold: (1) Condition[C-6%(a) is verified and (2) ¢ =0
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or Condition (b) is verified; then as N, T — oo,

VI(@* — (95)71a) 5 N(—e(®5) " Aa, (95) 7 Sa(@5) ),

in probability and A, and X, are defined in|Theorem 2.1).

Remark 3 In[Lemma C.1, we derive the bootstrap distribution of the estimators, &*. According
to the distribution of VT(&* — (®*)~1a&) follows a normal distribution with a non-
zero mean vector, —c(®) " 'A,. The asymptotic bias is proportional to (Ha*)*lﬁ. However, the

weighting parameters 0* are not affected by the rotation problem.

Remark 4 To match the bootstrap distribution with the limiting distribution of the estimators
in the original sample to achieve bootstrap consistency since our rotation matrix H* may not be
an identity matriz. Therefore, we consider the rotated version of our bootstrap results, given by
\/T(q)*d* —a&). For the consistency of the rotated bootstrap results, we rely on the Corollary 3.1. in
GP (2014) such that sup,cgrip |P*(VT(®*@* — @) < ) — P(VT(a — o) < x)| & 0. This corollary
justifies the use of a residual-based bootstrap method in the context of the factor-MIDAS regression

models.

Notation: P* denotes the bootstrap probability measure, conditional on the original sample.
The bootstrap measure P* depends on the original sample size N, T and T, and sample realization
w, but for a simpler notation, we omit these and write P* for Py . We write Ty, = op+(1), in
probability, or Tx, P50, in probability, for any bootstrap test statistics T, if, when for any 6 > 0,
P*(|T%p| > 6) = 0p(1). If for all § > 0, there exists Ms < oo such that imy 7o P[P*(|Txp| >
Ms) > 0] = 0, we write as T = Op+ (1), in probability. We write T'x- % D, in probability, if T,
weakly converges to the distribution D under P*, conditional on a sample with probability that

converges to one, i.e. E*(f(T%r)) & E(f(D)) for all bounded and uniformly continuous function

f.
Lemma C.2 7 ST Ef(ji*_j/m - H*ft,j/m) = 0p+(1).
Lemma C.3 If \/T/N — ¢, where 0 < ¢ < o0,

(0) F S (B = H R ) E = H Fo ) = SV H THA VL 4 00 (1),

t—j/m
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(b) \%T Z?:l(-ﬁ**j/m - H*ﬂ—j/m)(ﬁ;l/m - H*ft—l/m)/ = gv*_lH*fj—lH*f/*_l + op(1),

(¢) g St H Fispm Ty joa = H Fiypm) = 5 H'T (ﬁ Yoy Fo S ) V2 4 ope(1),

(@) J5 ST B Fotym (7= B Foypm) = N (5 S0 Foipm ) T (2 S T B ) V24
op=(1).

Lemma C.4 If VT /N — ¢, where 0 < ¢ < o0,

(a) S ST (F7 (0) — H*F@))(F; (6) — H (@)
— gV (S0 i (O)0wy (8) + X wi (O wn(8)) V=1HG + 0 (1),
(b) o Sy HFuB)(Fy (0) — HE(8))
= cH [ S0 w2 (0) + S0 iy w0) (3 ST Frtpm i) (8| TV2H + 00 (1),

proof of Since in the bootstrap world, &* maximizes the following objective

function:
T
1
72— g(Fa
t:l

where g(F;; &) = B'H*'Ef(#). Then, we have

~ x *\—1 ~ 1 d [%. ~ B 1 d %, ~
R FO LU IS o)

where s(F};@) is a score vector and H(F}; &) is a Hessian matrix in the bootstrap world. &7 is

intermediate between & and &*. We analyse each term. We can write the score vector as follows.

t t t ~ )
VT = VT t:l 96
where the partial derivative is as:
Fria Fy; Fy(0) — HFy(9)
ag( t ,Oé) — @*89( t7a) _|_ Pt*, Where Pt* — 3

aN 8 * ’ 3 / ’
o o (8Faé 9)’ H* 1/8 8Fé(60) g1 B)

and ®* = diag(H*,I,). Using this decomposition, we can analyse th 1€ 8 (gé,a) into two
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parts. The first part can be written as follows.

T T q q
Z &1 (Fy(0) — H*Fy(0 TZ: > wi O Ep — H Fjpm) + Y (w;(0) = w; (0) H*Fy_jp
: : :0

7=0 T t=1
q _ 1 T ~
+ ) (wi(0) —w(O)H —= > i Fy jm
- T4
7=0 t=1
= Op*(l).

. ~p . . . . . . . .
Since # = 6 and weighting function is continuous function, we can use continuous mapping theorem

and have the second part as o,(1). The first part is 0,«(1) because of The second

part can be argued similarly. It is easier to check for each row. k-th row in the second part is

(aﬁggiék)ﬂg_llﬁ aF’ééke’“ ' Bk). Then, for this k-th row, we can write as:
1 ¢ 3F1§t (Ok) = OF(0k) 1n | LN e 0wk (Gr)
Tgs o0, Br — Tgkﬁk) = H;" B T;Q jz;aék(Fk,t—j/mHka,t—j/m)
1 o o= [ Owin@r) w6 -
+—T ; €t jgo { 8§k 00, } kit—j/m

where Hj, is the k-th diagonal element in the rotation matrix, H and [ is the k-th slope parameter
in 5. We have the second equality because ,5’ 5 H 13 and Therefore, we have the

following result.
T
F . N
Z COCEA) L N (0, 230293), (23)
where ®} = plim ®* and Q = Var* (% 23:1 5§§a7t> and §o s = dg(Fy; a)/a.
Ft*ﬂ)

Now, we analyse the second term in the score vector % Zle B H* Y (H*F,(0)— Fy (5))8"(87&

into two parts: with respect to B and 9~, respectively. The first part of the score vector with respect
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to B can be written as follows.

= —cH§Bg + oy (1)

in probability, where we define Bﬁ as follows.
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in probability, where we define By as follows.

Next, we rewrite the hessian matrix as follows.
T T T
1 ~ 1 D%g(Ef g(F;a) 0g(Ff; &)
_ H(F* &) = — # t ;& t
TZ (F'5) T;ft dada’ z:: o/

t=1

Then, the first term is 0p+(1) by [Condition C.5*(b) and the results in the proof for

The second term converges in probability to @35@8 as following:

8

o 8(1 8a oo’ ](I)O - (I)OECI)O’ (24)

where FE [% %} = 3. We can obtain this by rewriting 89(53*;“) o* 89(Ft’ ) 4+ Py. Then,

it 89((%;6‘) PY = 0p(1) and %[ Pf P} = 0,+(1), in probability. By putting all together,

we have

VT(@* — () 'a) L N(—c(®5E0;) 03By, &5 1S 1OS 105 ), (25)

in probability, where B, = (Bﬂ, Bg)’ . Under |Assumption A.lHAssumption A.6|7 plim vV = Vv,
plima = ® ‘o, plim' = HTH, plimT;_; = HT,;_;H, plim & = &} and plim Q = $,Q®, implies
that VT(a* — (®F)~La) L5 N(—cd* 1Ay, &2 15,057 Y), in probability. m

The proof of [Lemma C.3is similar to the proof of Lemma B.2 in GP (2014) and -
(a) and (c) are similar to the proof of Lemma B.3 - (a) and (b) in GP (2014), respectively. Thus,
we show the proof for (b) and (d) below.

proof of Lemma C.3] Part(b): Using the identity in GP (2014), we can rewrite the part
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(b) as follows.
1, - - - :
Z(Ft*—j/m - H*Ft—j/m)(Ftil/m o H*Ft—l/m),
T
rx—1 1 * A A * A* * * INrx—1
=V T D ALy A+ A+ A AT iy + Aty + Ay Ad ) VT
t=1

Then, ignoring V*~! = Op+(1), we can show that the terms except %Zthl 34 J/mAg’t |/m 8Te

— T * * — T /
op*(N~1). For example, we have & >, Al j/mAlt Um = =Op(T7Y), 5,4 2,t—j/mA2,t—l/m =

/

Op*(Nfl(SK,QT ), and = ST AL i m ALt = Op+ (N léngH). For the cross terms, we can show

T * — — — T * — —
that%Et:l Lit— J/mA?t l/m = Op (T712N l/25N1TH)’ %Zt—l Lt— ]/mA?)t l/m — = Op(T7'2N71/2),
T * * — — T * - * *
T 21 A1,t—j/mA4t l/m = Op: (T12N71/2), 7214 ASt lym — = Op(N 15N2T )s AS j/mA4t lym —

Op*(Nfl(SleTH), and ST A;t_j/mAZt 1ym = Op (Nflég,lTH). Since we can show that

4 1 e 1 Ne € j/m 6:/—l/m5\ 7 1
Z 3,t—j/m 3t l/m_N ng \/N \/N +0p*( )a
t=

*
2,;t—j/m

we have

T
* T \/T~*, = % —
Z t —j/m H* Ft j/m)( t—l/m — H thl/m)I:WV 'H Fj—lH Vv 1+0p*(1)7

where we define T';_; = % Ethl < T vics

by PP
= ”’") <etl/’" > Part (d): Using the identity in GP (2014),

we can rewrite part (d) as follows.

T
* * * * * Crk—1
Z Ey g (E iym — H Fyijm) sz Fyjyml Titym t A m T ALy T ALym)'V

ﬂ\

= \/TH*(d}l + djt‘Q + dj;t‘g + d?;‘4)/‘~/*71

where d}; = % Zthl Ft—j/mAZ;—l/m for i =1,2,3,4. Then, we can obtain d}; = Oy~ (6;[1THT_1/2) +
Op+(Ty"), diy = Op-((TN)~Y/2) by [Condition C.3%}(a) and d; = O+ ((TN)~Y/2) by
tion C.3%(b). Finally, dj, = & (7 Ximy FooiymFY_j )T (7 S0 By )V 4 0pe(1). Thus,

T Ty
1 * T [ * T- * a 1 oo’ | Yrx—2
S utb g = (LS R ) (S5 ) o
| ]

proof of Part (a): By rewriting part (a) and applying we can
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show the following.

/
T q q
1 0\ (I N\ ([ % * T
T Z ij(e)(Ft jfm — H Frjym) {Z Wi (O)(F = H ™ Fijm)
t=1 | j=0 7=0
q R T . . B R
= w;(0) = Y E = HE ) (FY )y = HFy i)' | w3 (0)
j=0 t=1
q q ~ 1 T ~ ~ B ~
22 w0 | = > (= H By ) (F g = H*Ft_l/my] wi(6)
=0 1#j t=1
~ q ~ o~ ~ q ~ o~ ~ ~
=V H (D wi(0)Tw;(0) + > wi(0)Tj—wi(0) | H* V' + 0,0 (1)
§=0 j=0
~ q ~ o~ ~ q ~ o~ ~ ~
= cHV™' (D wi(0)Tw;(0) + > wi(O)F;ywi(0) | V7V HG + 0pe (1),
=0 §=0

We use Lemma B.1 in GP (2014) to obtain the final equality, V* = H*VH* + Op*(éjfTH)

V + Oy (657,,) and H* = Hi + Op+ (07, ) in probability. Part (b):

/

T q
> [Z Wi ONE o = H*Fijym)

q
Z wj(g)H*Ft—j/m
=0

q T q q T
i L * T [ n 0 i L * T [ n 0
= ij(O)fT S HFy By — Frjym) wi(0) + D wj(a)ﬁ S HFy Y — Frjym) wi(6)
j 3=0 1#£j t=1

[ 4 a q ]

T
1S3 @) (LS AR ES s
=0 §=0 I1£j — |

T

q q q i
* 2 0 § § : N 1 § : n n n Y7 — *
= CHO w‘?(G) -+ ’LU](G) (T Ft—l/mFt/—j/m> ’U}l(g) I'v 2H0 + Op*(].)7
| =0 t=1 |

=0 1#j

in probability. The final equality is by applying Lemma B.1. in GP (2014) and by F;—jf/*_l =
VH* and H*V*"' =V H* =

Lemma C.5 Suppose[Assumption A.IHA.0 hold. If in addition either:

1. {Fs}, {\i} and {eit,} are mutually independent and for some p > 2, Eley|* < M < oo;

2. for some p > 2, Eley|’? < M < oo, E||N|]?P < M < 00 and E||F||*? < M < o,

it follows that,

46



(a) 2= F = HE|P = 0,(1),
(b) %Zi:ﬁp\i—H_l/)\inZOp(l),
(¢) Tox Lt Sisy &, = Op(1).
(d) 7 S|P = 0p(1),

(¢) Ton 2o Yoiy @y = Op(1).

proof of For the proof of (a)-(d), the arguments are similar to the proof in GP
(2014) (i.e., their proof of Lemma C.1, page 16). Part (e): Note that @;; = €; — Z?;l a;,j€it—j. By
¢ inequality, we have:

N Ty N Ty N Ty pi

p p—1 p p—1
NTHZZ|U”| =2 NT ZZ|6”| +2 NT ZZZMUGM il" = Op(1).
i=1 t=1 i=1 t=1 i=1 t=1 j=1
The first term is Op(1) by m . The second term is also Op(1) by applying Cauchy-

Schwarz inequality as follows.

N Ty pi N pi 1 N Ty
nered D)D) SIICINIES 95 SILHDRIES) 3) LD}
i=1 =1 j=1 =1 j—1 ]

Again, the second term is also Op(1) by (c). The first term is Oy (1) since 3 72 [a;j| < co. m

proof of [Theorem 3.1l  We prove each condition. [Condition C.1% - (a): E*(e},) =

E* (X520 bijus,—;) = 0 since E*(uf, ;) = E*(itg—jmie—j) = 0 by mig—; ~ 1LdN(0,1).
m - (b): we use the MA(co) representation and write 73, as

L
Yot = E* (N Z 62&%)

* 1 7 * 7 *
=EB N Z bi,juz',t—j Z bi,jui,s—j

=1
* 1 Y& S ~2
=L\~ DD bigbis—eialy

i i=1 =0
Then,
Ty Th o Ty Ty ~ 2 1 Ty N
ZZ’%JQ < sz‘,jzzbz‘,s—t+j szﬂﬁ =0p(1),
L — =0  t=1s=1 H321 43
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by applying p = 4 in [Lemma C.5(e). [Condition C.1% - (c): we can write the term as:

By assuming Var(n; 1—inis—1) < 7, part (c) is bounded as:

Ty Ty N Ty
59 39 W ITINIEN]0 3) sU LN | DOREES 9p o |

H =1 s=1 =1 [=0 =1 1=0 i=1 t=1

where we apply (e) with p = 4. [Condition C.2% - (a): Note that we can write 7%, as

follows.

o)
’7;} Z ezsezt N Z Z bi ,]uz t—j (Z Bi,lu:sl> :
=0

i=1 \ j=0

Since wfy_jui , =0if s =1 # ¢ — j, we can rewrite vy, as:
TH TH 1 N o0 5 B
Vot = Z > FF N DO bigbis s

LA —] i=1 j=0

HH~~21/2 1THN 4THOO~ ~ 1/2
Z Z HFsFtI ~T Ui, bij bi,s—t-l—j’ = Op(1),
NTy ; .

=1 s=1 t=1 i=1 s=1 j=0

|4
where the first term is bounded by ﬁ Z;‘Ffl HFtH and apply [Lemma C.5t(e) with p = 4. [Condi-

- (b): we can rewrite it as:

Ty Tg
ZTHZZFFZ ZZCOU ztezsv ]tejl)
s=1[=1 =1 j=1

Since we assume the idiosyncratic error terms are cross-sectionally independent, we have Cov*(ej,ef;, €],€7;) =

0 for i # j, for any t,s,l. We only need to consider the case where i = j, Cov*(e},el,, ej,e};). Thus,
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part (b) becomes,

1
Ty 2=

WZZF ’Lte’LS E*( ztezs))

t=1 i=1

o 5 1 N 1 TH 1 TH o

<17 Z bi ;" N Z (T ﬂ?t) (T ZF;FSQ?78>
=0 =1\ 2 H
oo T 1/2 | In 1/2

_ i -4

(i) (R rya) (w3l s Ty) -oa.

=0 =1 t=1 s=1

where apply Cauchy-Schwarz inequality repeatedly. [Condition C.2% - (c): We can show part(c)

is Op(1), by first rewriting as follows.

N [e'S)
1 2 1 -2 -2,
< 7. 2 ||F 5 2Pl D (bia| By
t=1 i=1 j=0
_ 1/2
| Tu A\ 2 L MmN ) ) 7Y
- 3 7 ~9
(2l |2 (A e e
= L t=1 i=1 7=0
By Cauchy-Schwarz inequality, the term in square bracket is bounded as:
Ty oo N Ty
1 ~ ~2 ~ - 2 1
eSS (A fof) < AP Sl 5 St o
t 1 5=0 =

by applying [Lemma C.5| [Condition C.2% - (d): we can write the term as:

Ty 7 Ty
1 Z Nef 1 Z 12 1 Z
Th VN N Z (TH t=1 %)
2
N Ty 0o
1 21 .
= v 2N 7 2 | X b
i=1 t=1 \j=0
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where we apply Cauchy-Schwarz inequality to obtain the last equality. [Condition C.2% - (e): It

is sufficient to show that:
Z Z Z Ai )‘/ ztejt *(6?t6§t)) = op(1).
i=1 j=1
The term A* is mean zero by construction, therefore, it suffices show that the variance of A* tends

to zero in probability. For simplicity, we take r = 1. Then, the variance of A* is:

Ty Tu
Var(A*) = =73 ZZ Z iNjANARCov™ (€567, efsers )
H =1 s=1 i,7,k,l

where Cov*(efte;t,efsezs) =0ifi #j#k#1 Wheni=j=Fk=1 Cov(eje}, e[ e},) =
Eooobngls t+5U zt j and wheni = k # j = [, Cov*(e zte;tve?sezs) = (Z?io Bzz,lazz,t—l> (Zfio i)?,lait—l)'
By applying p =4 in we have Var*(A*) = op(1).

The proofs for |Condition C.4* and |Condition C.5* are same as in the proof for Condition C* and

Condition D* in GP (2014). This is because we use wild bootstrap for resampling &, = y; — B'E,(0),
which is the same procedure in GP (2014). =

D Additional results

Table 7| shows the bias and 95% coverage rate of 5 when the idiosyncratic error term follows simple
AR (1) process as:

€it, = Pi€it,—1 + Vi, fortp =1,.... Ty

where v; 4, is i.i.d. randomly generated from N(0,1). p indicates the auto-regressive coefficient,
which implies the persistence of auto-regressive process. For simplicity, we impose that each variable
shares same autoregressive coefficient, p; = p. In we compare the results by varying
persistence. We increase the coefficient from 0 to 0.7. When the persistence in the idiosyncratic
error term is p = 0.5, the bias is around twice bigger than the bias where there is no serial-

dependence. Moreover, the size of bias increase as the persistence increases.
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Table 7: Bias and 95% coverage rate of

p=20 p=0.5 p=0.6 p=0.7
bias 95% bias 95% bias 95% bias 95%
150 || -0.3380 84.7 | -0.5887 68.02 | -0.6808 60.42 | -0.7993 49.18
50 300 || -0.3100 81.76 | -0.5362 57.94 | -0.6197 48.16 | -0.7278 35.18
600 || -0.2890 74 -0.4970 40.96 | -0.5746 29.32 | -0.6761 17.2
150 || -0.2022 89.82 | -0.3763 83.18 | -0.4450 79.34 | -0.5372 72.62
100 300 || -0.1709 90.72 | -0.3157 81.1 | -0.3729 75.68 | -0.4502 67.1
600 || -0.1565 88.7 | -0.2849 75.36 | -0.3358 67.44 | -0.4047 56.16
150 || -0.1343 91.48 | -0.2639 87.6 | -0.3163 &85.38 | -0.3890 81.8
200 300 || -0.1027 92.5 | -0.1996 89.18 | -0.2393 87.28 | -0.2943 83.54
600 || -0.0865 92.44 | -0.1647 88.02 | -0.1968 85.48 | -0.2411  80.7
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