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Abstract

Factor-MIDAS regression models are often used to forecast a target variable using
common factors extracted from a large panel of predictors observed at higher frequen-
cies. In the paper, we derive the asymptotic distribution of the factor-MIDAS regres-
sion estimator coefficients. We show that there exists an asymptotic bias because the
factors are estimated. However, the fact that factors and their lags are aggregated in a
MIDAS regression model implies that the asymptotic bias depends on both serial and
cross-sectional dependence in the idiosyncratic errors of the factor model. Thus, bias
correction is more complicated in this setting. Our second contribution is to propose a
bias correction method based on a plug-in version of the analytical formula we derive.
This bias correction can be used in conjunction with asymptotic normal critical val-
ues to produce asymptotically valid inference. Alternatively, we can use a bootstrap
method, which is our third contribution. We show that correcting for bias is important
in simulations and in an empirical application to forecasting quarterly U.S. real GDP
growth rates using monthly factors.
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1 Introduction

MIDAS (Mixed-Data Sampling) regressions are popular tools in forecasting. Originally pro-
posed by |Ghysels et al.| (2004} 2005; 2006} [2007)), these models combine predictors observed
at high frequencies by relying on a parametric temporal aggregation function to forecast a
target variable sampled at a lower frequency. Originally proposed to handle financial vari-
ables, they have become standard tools in macroeconomic forecasting (see e.g., |Clements
and Galvaol| (2008} 2009), which relies on MIDAS autoregressions for nowcasting U.S. real
output growth).

More recently, standard MIDAS regressions have been generalized to “factor-MIDAS
regressions” (or “factor-augmented MIDAS regression models”) by including as predictors
common factors extracted from a large panel of time series sampled at a higher frequency
than the target variable. By combining with the dimension reduction properties of factor
models, factor-MIDAS regressions are powerful tools for forecasting and they are often used
in empirical applications (see for instance Marcellino and Schumacher| (2010)), Monteforte
and Moretti|(2013), Kim and Swanson| (2018), and [Ferrara and Marsilli (2019)). Estimation
of factor-MIDAS regressions is complicated by the fact that some of the predictors are latent
common factors. It typically proceeds in two steps: we first extract the common factors using
principal component analysis, and then estimate the model using nonlinear least squares,
where the estimated factors are aggregated by a temporal aggregation scheme.

Although factor-MIDAS regressions are empirically popular, no formal inference methods
have been proposed in the literature. Our paper proposes inference methods for factor-
MIDAS regression models and provides the theoretical justification for these methods. The

main contributions of this paper are as follows. Firstly, the asymptotic distribution of the



factor-MIDAS regression estimators is derived. We show that there is an asymptotic bias in
the second step due to the estimation of the factors in the first step. Secondly, we propose
two inference methods accounting for this bias: a bias correction method based on the bias
formula we derive and a bootstrap method.

Our work is related to the existing literature on factor-augmented regression models
(without mixed frequencies). |Bai and Ng| (2006) first studied the “generated regressor”
problem in standard factor-augmented regression models. They showed that inference for
the regression coefficients could proceed as if the estimated factors were observed if the
cross-sectional dimension N was sufficiently large relative to the time dimension 7', more
precisely if /T /N — 0. More recently, |Gongalves and Perron| (2014) (henceforth, GP
(2014)) showed that an asymptotic bias may appear under more relaxed assumption (i.e. if
VT /N = ¢, 0 < ¢ < 00). We extend these results to factor-MIDAS regression models. This
is not a trivial extension for two main reasons. First, the estimation problem in a factor-
MIDAS regression model is more complicated because the predictors include latent factors
(and their lags) sampled at a different frequency than a variable of interest. In addition,
the second step is based on nonlinear least squares (rather than OLS) because of a temporal
aggregation, and this complicates the asymptotic analysis. In particular, whereas the bias
derived in |Gongalves and Perron| (2014) depends only on the cross-sectional dependence,
the asymptotic bias of a factor-MIDAS regression model depends on both serial and cross-
sectional dependence in the idiosyncratic errors. Consequently, different methods of inference
are required for factor-MIDAS regressions.

We consider two different methods of inference in this context. The first is an analytical
bias correction that can be used along with asymptotic normal critical values. Our plug-

in bias correction is robust to both serial and cross-sectional dependence of unknown form



in the idiosyncratic errors. It is based on the asymptotic formula of the bias we derive,
replacing unknown parameters with consistent estimators. As in|Ludvigson and Ng| (2009),
who also propose a bias correction formula for the standard factor-augmented regression
model without mixed frequencies, we rely on the CS-HAC estimator of |Bai and Ng| (2006)
to account for cross-sectional dependence. However, our estimator is more complex since it
also requires robustness to serial dependence.

Our second method of inference is based on the bootstrap. The bootstrap has two signifi-
cant advantages: it can perform better in finite samples, and it avoids the explicit estimation
of the bias term which can be complicated in this context. We propose a bootstrap procedure
inspired by|Gongalves and Perron| (2014), which is a residual-based bootstrap. Although the
method is inspired by |Gongalves and Perron|(2014), the asymptotic justification is substan-
tially more complicated. More importantly, the need to mimic the asymptotic bias requires
the bootstrap to be robust to both serial and cross-sectional dependence. Since none of the
existing bootstrap methods in the literature allows for both forms of dependence, we propose
a new bootstrap method for factor models that has these properties. Our method is based
on an application of the sieve bootstrap to the idiosyncratic residuals of each time series in
the panel data model, where the corresponding innovations are resampled using the cross-
sectional dependent bootstrap proposed by |Gongalves and Perron|(2020). We show that this
bootstrap method is asymptotically valid when each idiosyncratic error in the factor model
is generated by an AR(co) process with innovations that are potentially cross-sectionally
correlated across the panel. A special case of this new bootstrap method is considered by
Gongalves, Koh, and Perron| (2024) when testing for the number of common factors in group
factor models (as proposed by Andreou, Gagliardini, Ghysels, and Rubin| (2019)) without

theoretical justification.



We illustrate the good finite sample performance of the plug-in bias estimator and the
bootstrap using Monte Carlo simulations. In particular, the results show that it is important
to correct the bias due to the estimation of the factors in the first step. Although both the
plug-in bias correction and the bootstrap methods replicate the bias well, the bootstrap
outperforms the plug-in bias estimator by further reducing the coverage rate distortions.
Finally, we apply our new inference methods to an empirical application where we nowcast
quarterly U.S. real GDP growth rate using monthly macroeconomic factors. The results
show that there is a significant bias, thereby indicating the importance of correcting it.

The rest of this paper is organized as follows. In Section |2| we derive the asymptotic
distribution of the factor-augmented MIDAS regression model and propose a plug-in bias
estimator. In Section we propose and theoretically justify the bootstrap. The simulation
results are shown in Section and the empirical application is discussed in Section
Section@ concludes the paper.

For any matrix A, ||A|| denotes its Frobenius norm defined as ||A| = (trace(A’A))Y/2.

p(A) denotes the Euclidean vector norm of the vector Az: p(A) = max,=1 [|Az|, where

|Az|| = (' A’ Az)/2.

2 Asymptotic Theory

2.1 Factor-augmented MIDAS regression models

The MIDAS regression model projects high-frequency variables onto a target variable, which
is denoted as ;. The regressors are observed at most m times between ¢ and £ —1. To handle
variables sampled at mixed frequency, a MIDAS regression aggregates the high-frequency

variables with a lag polynomial function. The basic MIDAS regression model with a single



observed regressor x; can be written as follows:
Yo = Bo + BIW(LY™; 0)ay + ¢y, t=1,...,T, (1)

where W(LY™0) = S25 wi(9)L*™ and LF/™z, = Ty_i/m- Here, wi() is a weighting
function that temporally aggregates the regressor and its lags, and 6 is a p x 1 vector of
weighting parameters. To identify 8, we assume that wy,(d) € (0,1) and S5, wi(f) = 1.
A common weighting scheme in the MIDAS regression model is the exponential Almon lag

with two parameters such that

exp(01k + 02k?)
> k1 €xXp(01k + 02K2)

(2)

Other weighting schemes include the beta function and the linear function (see |Ghysels,
Valkanov, and Serrano|(2009) for detail).

In this paper, we consider the factor-MIDAS regression model, which employs unobserved
high-frequency factors as regressors. In particular, letting the regressor x; in be replaced
by a latent factor, we write the model as follows.

K
e =Bo+ BW L™ 0) fi+er= B0+ P Y wi(0) friym + e, t=1,....T,
k=1

where f;_x/m is a (single) factor in the following panel factor model,
Xt—k/m:Aft—k/m+et—k/ma k:m—l,...,07 andt:]_,...7T. (3)

The factor model includes factor loadings denoted by A and an idiosyncratic error term,

€i—k/m- If there are r unobserved factors, represented by a r x 1 vector of common factors



denoted by fi_x/m in the factor model , then the model can be generalized as follows.
Yt = 60 + BQW(Ll/m7 e)ft + & = BO + BiFt(e) + Et, = 17 S 7T7 (4)

where 51 = (B11,...,01,), and 8 = (0],...,0.) with 6, = (0;1,...,0;,), a p x 1 weighting
paramete for j-th factor, for j = 1,...,7. We define F;(6) = W(LY™;0)f, in the second

equality. In fact, the temporal aggregation in this generalized model applies on a vector as

K K
F(0) =Y we(0) L™ fr = wi(0) fokm
k=1 k=1

where wy,(6) is a r x r diagonal matrix such that wy(0) = diag(wy1(61), ..., wk,(6,)), where
wy,j(0;) is the weight for the k-th lag of the j-th factorﬂ To derive the distribution in the

next section, we further simplify the general factor-MIDAS regression model to
yt:g<Ftaa)+gta tzl,...,T, (5)

where g(F4, o) = Bo+81F4(0), o = (8',0") with 8 = (B, 81)', and Fy = (L, f{, iy s -+ Sl epm) -
For convenience, we use the high frequency time index denoted by ¢, = 1,..., Ty, where
Ty = mT. We derive this by noting that t, = m((t — 1) + i/m) for i = 1,...,m, and
t=1,... ,TE Using this notation, we can write the factor model as X;, = Af;, + e, , for
t, = 1,...,Ty. Using the matrix notation, we write the factor model as X = fA’ 4 e, where
X is a Ty x N matrix of high-frequency time series, f = (f1,..., fr,) is a Ty x r matrix of

common factors, and e is a Ty x N matrix of idiosyncratic errorsﬁ

I'Note that at least one component of 31 needs to be non-zero to identify the weighting parameters, 6.

2Note that when m = 1 and K = 0, the factor-MIDAS regression model is equivalent to the standard
factor-augmented regression model in GP (2014).

3With this notation, a high-frequency observation at ¢, is equivalent to observing it at the i-th intra-period
between ¢—1 and ¢. Note that the time notation in the factor model (3) can be written as (t—1)+4 (m—k)/m.

4One may consider a situation where X includes variables with different frequencies, such as monthly
and quarterly, while y; is observed annually. In this case, the group factor model discussed in|Andreou et
al.| (2019) can be exploited to extract the factors.



2.2 Asymptotic Theory

We denote NLS estimators by & when the factors are observed. Then, |Andreou, Ghysels,

and Kourtellos| (2010) show that the limiting distribution of & is as following:
VT(& = ap) S N0, =181, (6)

where ag = (0',0"), £ = E[gauh,), and Q = E[e}ga .9, ] With goy = 0g(Fi, a)/0o. When
the true factors are observed, the estimators are normally distributed with mean zero and a
sandwich variance.

In factor-MIDAS models, however, the factors are latent, and we have to estimate them.
Accordingly, the estimation in the factor-MIDAS regression model proceeds in two steps.
First, we estimate the common factors from a panel dataset of high-frequency indicators
by principal component analysis (PCA). The estimated factors, f, are equivalent to /Ty
times the eigenvectors of X X’/Ty N corresponding to the r largest eigenvalues (in decreasing
order). The estimated factor loadings are A = X' f/T H Second, we estimate the parameters
f and 0 using nonlinear least squares (NLS) by regressing the low frequency variable on
the temporally aggregated estimated factors at high-frequency. In the factor model, the
estimated factors f, are only consistent for H f;, where the rotation matrix H is defined
as H = V‘l%{%, and V is a r x r diagonal matrix of eigenvalues of XX'/TgN in a
descending order (for more details, see |Bai (2003)). By incorporating the estimated factors

in the regression and noting the rotation of the factors, we can rewrite as follows.

e = Bo + BLH ' Fy(0) + B H ' (HF,(0) — Fy(0)) + & = g(Fy, o) + &, (7)

®When Ty > N, we use normalization such that A’A/N = I, and f’f is a diagonal matrix, which is com-
putationally easier. In this case, A is the matrix of v N times the eigenvectors of X' X /Ty N corresponding
to the r largest eigenvalues and the estimated factors are f = XA/N.



where g(F,a) = fo + B{H'E(0), a = (Bo, BiH1,0), and F(0) = >, W (0) fr/m-
The coefficient on the aggregated factors estimates 3] H~'. Moreover, the estimation error
of the factors implies that the regression error term is & = [/ H '(HF,(6) — Fy(8)) + .
We denote the NLS estimators of « in by a = (5', 5’)’ to distinguish from & = (ﬂA’, é')’,
which are the estimators from the regression of y; on the true factors f;. Next, we derive
the limiting distribution of v/T(& — «) under the assumption that v/7T/N — ¢, where 0 <
¢ < oo. Note that although the variable of interest is a linear function of factor estimation
error similar to the factor-augmented regression models, there exists a nonlinear weighting
function. Furthermore, unlike standard factor-augmented regression models, the lags of the
factors are incorporated. As will be demonstrated in the next theorem, the incorporation of
the lags of the factors results in the fact that the asymptotic bias relies on the time-series
dependence and cross-sectional dependence in the idiosyncratic error termﬁl

The asymptotic distribution of the estimators is derived under Assumptions A.1 - A.6
in Section A in Online Appendix. We also introduce the following notations: V = plim V/,
O = plim (f;—g) O = plim (ﬁ S ft’hfth_k), and B = VIQIQ'V!, which is the
asymptotic variance of v N ( fth - H fth) The asymptotic variance of the factor estimation
error is a function of I', which is defined by I' = limy_,o, Var (%) We assume that the
idiosyncratic errors in the factor model, ¢;, is stationary in Assumption A.2-(d). Under the

. . . . . Ney i N
stationarity of the idiosyncratic errors, we also denote I'y = limy_.o, Cov < \e/t% xS Aj%)

Note that by the identification assumption, Assumption A.1-(d) in Online Appendix, we
have ) = Hy, where Hy = plim H, and Hj is a diagonal matrix of +1, where the sign is

determined by the sign of f'f /Ty (for the detail of the proof, see the proof of (2) in

SNote that the time-series dependence in the idiosyncratic error term does not appear in the asymptotic

bias in the standard factor augmented regression models. For detail, see GP (2014) (their Theorem 2.1).

‘For the details, see|Bai| (2003).




Ng|(2013)). Therefore, the asymptotic variance can be also written as 37 = VIH,THV L

Theorem 2.1 (Asymptotic distribution of the estimators in the factor-MIDAS models)
If ﬁ/N — ¢, where 0 < ¢ < 0o, and Assumptions A.1 - A.6 in Section A in Online Ap-

pendiz hold,
VT(@ = a) S N(—cAa, Sa), (8)
where ¥, = Oy 1NN with &g = diag(1, Hy, 1,), and

Ag Bg
Ay = = (PeXP;) ! : 9)
Ag Bg

Bg = (Bg,, Bj,)" and By are such that Bs, = 0,

Bg, = [iwk(e){2f+v2fvl}wk(e)

K K
+ 30> w®){ VT HOD e HV T 4+ Qe THV 2 bun(6)| plim(By), (10)
k=1 I#k
and
K
By = plim() [k 1 90 {E + VYV } (6)
0 ~
+ Z Z w’“ {V*lﬂork,ngV*1 + Qk,lFH(’)V’Q}wZ(H)] plim(3), (11
k=1 l#k
where aL = diag <8w’5+1(91), ey %ﬂ) 15 a block diagonal matriz and the j-th diagonal
block is a p X 1 vector given by aw,g_;j(ej) forg=1,....r

In in|{Theorem 2.1} we use the Hadamard product which is equivalent to (Ao B);; =

A;;B;;. More specifically, S o aw’“(e is a block diagonal matrix where the j-th diagonal block

811.}] k

contains 3; ) for j =1,...,r. Based on|Theorem 2.1| the bias of the estimators is




proportional to ¢, the limiting value of v/T'/N, and also to plim(3;) = (Hy')'8;. This implies
that the estimates are biased unless 8; = 0 or ¢ = 0. Additionally, the asymptotic variance
of the estimated factors, 3¢, affects the bias. Since the variance of the factor estimation
error depends on I', which is a variance of the scaled average of the factor loadings and
the idiosyncratic errors in the factor model, the cross-sectional dependence of factor errors
matters. These findings are similar to the bias in the context of GP (2014).

It is important to highlight two main differences in the asymptotic bias between the
factor-MIDAS regression model and standard factor-augmented regression models. Firstly,
the bias in the MIDAS regression model depends on the weighting scheme, wy (), due to a
temporal aggregation Secondly, the bias depends on the covariance of the cross-sectional
average of factor loadings and the idiosyncratic error terms between two distinct periods,
represented as I'y,_;. This term arises due to the presence of the lags of the estimated
factors. To see this, consider a simple factor-augmented regression model with a lag and

without mixed-frequency variables as follows.

v = Oifi + Bafio1 + 0= B'F + ey,

where 8 = (p1,02) and F, = (fi, fi—1). We assume that the factor is a single factor for

simplicity. By the fact that the factors are estimated, we can rewrite it as follows.
ye=BH'F,+pH ' (HF, - F) +e.

Note that since we include a lag of the factor, we have a factor estimation error at ¢t — 1

as well as contemporaneous factor estimation error. Letting B be OLS estimator from a

8When there is no temporal aggregation, the MIDAS regression becomes unrestricted MIDAS (U-MIDAS)
proposed by |Foroni, Marcellino, and Schumacher| (2015). If the estimated factors are used as predictors in
U-MIDAS, there will be bias that depends on cross-sectional and serial dependence of the idiosyncratic error
term in the factor model, by the fact that lags of the estimated factors are present.

10



regression of y; on F,, we can show that
TR N R TR W T "
\/T(B —H'p) = (TZFtFt’> ﬁ Fie, + VT (szt t') fZFt(HFt —EYyH™
t=1 t=1
In fact, we can show that i Zt 1Ft(Ft HE,) (% 1 Var (\/N(Ft — HFt)>> =
O,(1/N) by Bai (2003) (see their Lemma B.2) and GP (2014). Therefore, the second term
is O,(v/T/N) and drives the asymptotic bias under the rate condition such that v7'/N — ¢
for 0 < ¢ < co. In GP (2014), since the contemporaneous factor is the sole predictor in

their factor-augmented regression model, the variance of contemporaneous factor estimation

error appears alone. More specifically, the bias is driven by %Zthl Var (\/N ( fi—H ft)),

which depends on %Zthl Var (’};%) This term implies that the bias depends solely on
the cross-sectional dependence of the idiosyncratic error term in the factor model. However,
when we incorporate a lag of the factor as a predictor alongside the contemporaneous factor,
the covariance between the factor estimation error at ¢ and ¢ — 1 becomes relevant, which
depends on Zt L Cov (A = Lﬁ) Thus, the inclusion of the lag of the factor indicates
that the bias depends not only on the cross-sectional dependence, but also on the time-series
dependence of the idiosyncratic error term in the factor modelﬂ

In the factor-MIDAS regression model, the inclusion of lagged estimated factors intro-

duces additional complexity. Similar to the previously discussed simple case, we have an

extra term such that 7—— Zth b1 Cov(V'N(fo, — Hf0), VN (for—i — Hfr, 1)) for k # 0,

! Negy, .. .
which depends on 7— Zth w1 C <A\/e% , \e/t% u ) . Therefore, the bias in our context relies

on the serial dependence as well as cross-sectional dependence of the idiosyncratic error term

in the factor model. This finding holds considerable significance, as the literature surround-

9This also explains why the bias in unrestricted MIDAS (U-MIDAS) regression models augmented by the
factors depends on cross-sectional as well as serial dependence of the idiosyncratic error term in the factor
model.
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ing factor-augmented regression models has primarily concentrated on the cross-sectional
dependence of the idiosyncratic error term. This focus necessitates the development of novel
inference methods that can effectively account for the time-series dependence inherent in the

idiosyncratic error term, which appears in our context.

2.3 Plug-in Bias

In this section, we propose an analytical estimator to account for the bias identified in
Theorem 2.1{ This is inspired by [Ludvigson and Ng| (2009), where they propose a plug-in
bias estimator by replacing the unknown quantities with their consistent estimators and
correcting the bias in the context of the factor-augmented regression model. Similarly, we
propose a bias-corrected estimator for factor-augmented MIDAS regression models.

In order to do that, we need a consistent estimator for the term I'j, which has never been
explored previously. Note that it depends on the cross-sectional and the serial dependence
of the idiosyncratic error term. When the idiosyncratic error term is serially but not cross-
sectionally correlated, we can estimate this term as fk N(TH - Zth Lt Ef\il S\Z-S\Qéi,th City—k>
where fk denotes the estimator of I'y,. However, when the idiosyncratic error term is cross-
sectionally and serially dependent, estimating this term is no longer straightforward, as
discussed in Bai and Ng (2006). To address this issue, Bai and Ng| (2006) propose an
estimator for the variance-covariance matrix of the cross-sectional average of factor load-
ings and the idiosyncratic error term, denoted by I'. They use the time series observa-
tions and truncation with n < N under the covariance stationarity such that r CS-HAC =
e D 1;\5‘ TLZ —1 Citn €ty

To propose a method to estimate 'y that takes into account cross-sectional and serial

dependence, we take an approach, similar to the one used in |Bai and Ng (2006). We use

12



the time series observations and a truncation method, that limits n < N observations. We

denote the estimator for I';, by f‘k, which is defined as follows.

fk,CS-HAC = — Z Z Z Ai )\I €i 1, €jitn—k> (12)

thk+1 =1 j=1

where n = min(v/N, /Ty ). Note that by Assumption A.2-(d), I'; does not depend on time.

Theorem 2.2 Suppose the Assumptions A.1 - A.4 in Section A in Online Appendiz hold.

Then, for any fited k =0,1,2,..., K — 1

T, — Hy VTR HG | 2 0 if -0,

_n
min(N, Ty)

Here, in [Theorem 2.2 I depends on the assumption on the serial and cross-sectional

dependence in the idiosyncratic errors of the factor model. If there is only serial dependence,
fk = le vazl 5\ 5\ TH k Zth L1 Citn City—k- If we allow for cross-sectionally dependence ad-
ditionally, fk = Fk’cg_HAc defined in . Note that if £ = 0, our estimators are equivalent
to the estimators proposed in [Bai and Ng| (2006]). enables us to construct

consistent estimators for and as follows.

K

2 Z fwk )+ Z Z wy (6 {V_lfk—l,CS-HACV/_l + Qk—zfcs_HAcV_z} wz(é)] 317 and

k=1 k=1 l;ék

Bﬁ1 -

K
L D) 9 o B .. B 1.
By= 00 [2 Z uge( Y pwg(0) + Z Z wk {Vﬁlrk—l,CS-HAcvil + QkleCS-HACV72} wl(e)] P,

k=1 k=1 l#k

where 7 = V' Qlcgnac@V ! with Q = f'f/Ty, and Qr—y = 32, fi, fin—&- Note that
the bias estimates can be simpler under the restriction on either cross-sectional or serial
dependence, or both. We denote the bias-corrected estimator by apc such that agc =

a— (—%Aa) Here, —A, is the estimate of the bias in &, where A, (B,B’ B))) with %

a consistent estimator of X, Bz = (Bj,, Bgl)/, and By, = 0.

13



Proposition 2.1 Suppose the Assumptions A.1 - A.6 in Section A in Online Appendiz hold

and \/T/N — ¢, where 0 < ¢ < o0, then
VT (Gpe— a) B N(0, ). (13)

Based on Proposition the bias corrected estimator no longer contains an asymptotic bias.
However, it is well known that an approach based on asymptotic theory does not perform
well in finite samples. Additionally, the bias takes a very complicated form in our context,
which makes it difficult to implement. Therefore, we discuss an alternative approach, a

bootstrap method in the next section.

3 Bootstrap method: AR-sieve+CSD bootstrap

In this section, we propose a bootstrap method and show its validity by proving that our
method satisfies bootstrap high level conditions under which any general residual-based
bootstrap is satisfied. We leave the bootstrap high level conditions in the appendix (see
Section C in the Online Appendix).

In particular, we propose a bootstrap procedure, where we resample the factor model
and the MIDAS regression model, and then obtain the bootstrap estimates. Note that in
we show that the asymptotic bias in our context relies on the cross-sectional
and serial dependence in the idiosyncratic error term in the factor model, therefore, it is
crucial that the bootstrap resampled idiosyncratic error term in the factor model mimics
these dependences. To the best of our knowledge, replicating the time-series dependence in
the error term in the factor model has not been studied in the literature. GP (2014) propose

a wild bootstrap and prove its validity in the context of the factor-augmented regression

14



models under no cross-sectional dependence in the error term in the factor model To allow

for cross-sectional dependence, |Goncalves and Perron| (2020) propose a bootstrap method

that utilizes a thresholding technique to allow for the cross-sectional dependence, so-called
CSD (cross-sectional dependent) bootstrap. However, these methods cannot be used in our
context as it destroys the serial dependence in the idiosyncratic error terms.

On the other hand, to resample the error term in the MIDAS regression model, GP (2014)

propose a wild bootstrap under the assumption that the regression error terms follow mar-

tingale difference sequence. |Djogbenou, Gongalves, and Perron|(2015) propose a block wild

bootstrap and a dependent wild bootstrap to resample the regression error terms to account

for serially correlated regression error terms. Depending on the assumption a researcher is

willing to make, either the approach proposed by GP (2014) or by|Djogbenou et al.| (2015)

can be similarly applied to resample the regression error terms in our context. In this paper,
for simplicity, we rely on the assumption that the regression error terms follow martingale
difference sequence and use the wild bootstrap.

The key finding in our paper is that the bias within our framework is influenced by both
serial and cross-sectional dependence in the idiosyncratic error term in the factor model.
To address this, we propose a novel bootstrap method that can replicate both dependences.
Specifically, we combine autoregressive sieve bootstrap and the CSD bootstrap to resample

the residuals in the factor model The autoregressive sieve bootstrap, initially introduced by

Biihlmann|(1997) and further explored by Kreiss, Paparoditis, and Politis| (2011) and [Meyer]

and Kreiss (2015), has been effectively applied to the estimated factors by Bi, Shang, Yang,

10Note that the asymptotic bias in the factor augmented regression models studied in GP (2014) only
depends on the cross-sectional dependence. For detail, see GP (2014).

“*Note that we cannot use block-based bootstrap or dependent wild bootstrap to account for serial depen-
dence, because these bootstrap methods induce a zero cross-sectional dependence. (For detail, see Gongalves
and Perron| (2020).)
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and Zhu| (2021). In our paper, we combine this method with the CSD bootstrap method
and apply it to the residuals in the factor model, which we refer to as the AR-sieve+CSD
bootstrap method. A more restricted version of our approach is recently considered by
Gongcalves et al.| (2024), where they substitute the autoregressive sieve bootstrap with an
autoregressive parametric bootstrap of order one, albeit without theoretical justification.
Also, as addressed in [Bithlmann| (1997), the autoregressive sieve bootstrap method offers
more flexibility than a parametric autoregressive model, which is highly subject to model
misspecification. The AR-sieve+CSD bootstrap method resamples each time series residual
in the factor model through an autoregressive sieve process, while the corresponding inno-
vations are resampled by the CSD bootstrap method. This approach effectively captures
cross-sectional dependence in the innovation terms through the CSD bootstrap method and
the serial dependence through the autoregressive process. The detailed algorithm to use
the AR-sieve+CSD bootstrap to resample the residuals in the factor model can be found in
Algorithm In Algorithm |1| we resample the residuals in the factor model similar to the
bootstrap procedure in|Kreiss et al.| (2011) and Bithlmann|(1997)). The difference is that we
resample the innovation terms in the autoregressive process using CSD bootstrap proposed
by |Gongalves and Perron| (2020).

One might consider utilizing high-dimensional vector autoregressive (VAR) models to
resample the idiosyncratic error term in the factor model. Recent studies, such as those
by [Kock and Callot| (2015) and Krampe, Kreiss, and Paparoditis| (2021), have explored this
high-dimensional VAR model. Kock and Callot| (2015) establishes oracle inequalities for both
LASSO and adaptive LASSO estimators in the context of high-dimensional VAR models.

Meanwhile, |Krampe et al.|(2021) develops a bootstrap method applicable to this framework.

12The full bootstrap procedure to obtain the bootstrap estimators can be found in the Online Appendix.
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Algorithm 1 : AR-sieve + CSD Bootstrap for the factor model
Fort,=1,...,Ty, let

X*

4,th

= S\Qﬂh + e, and X; = Afth +ef

where €7, is obtained as follows.

For eachi =1,... N, select an order p; = p;(Ty), pi << Ty, for example, by an information
criterion such as the Akaike information criterion (AIC), and fit a p;-th order autoregressive
model to €1, ..., € 1,, where &, = X;4, —S\ifth. We denote él(pl) = (&i,j(pi),j =1,...,m),
the Yule-Walker autoregressive parameter estimators, such that éi(pi) = D(p;)~'5,,, with
f?pi = (ie(”? '?e(Q)’ s 75/6(171')), and F(pz) = (’7@(7” N 8))7‘,811,2 ..... Di such that

Ta—|7|

- 1 - N _
Fe(T) = E Z (Eit — ei)(ei,th,+|r| — &), (14)
tp=1

_ ~ =11 -
for7=0,...,p; and €; =T} Zth:l Cit -

With chosen lag length p; = p;(Tx),

pi
€ie = Z Gij(pi)eis, —j +uiy,, fortn=1,..., Ty, (15)

j=1
where uf, = (uj,;, ..., Uy, ) = 5311/277% with n, ~ i.i.d (0,Iy). The initial conditions are
€ios-- €1 p =0, fori=1,..., N, which is equivalent to the stationary mean of e}, in the

bootstrap world. Following |Gongalves and Perron| (2020), we choose 3, by a thresholding
technique such that

Zu = (&u,ij)i,jzl,...,N7

with
~ . . 1 Tu
~ Ou,ij 1= . ~ ~ ~
Ouwii =13 -~ L0 ., % with 6, = — Wi g, Wi g, s
{ Gl (Fuiil > w) i # ], gy 2
where w is a threshold and @;,, = €4, — Z?;l qgi,j(pi)éi7th_j for i =1,...,N and t;, =
1+pz>aTH

In our paper, we do not address the high-dimensional VAR model due to the complexities
involved in its theoretical justification in our framework, opting instead to reserve this for
future research.

In order to prove our bootstrap method is valid, we assume that {e;;, }f;f’:l is an infi-
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nite order moving average process that can be represented as an AR(co) process such that
ity = Z;; Gij€ity—j + Wiy, for tp = 1,..., Ty and ¢ = 1,..., N. The innovation terms
in AR(co) process, uy, = (u14,,...,uny, ), are identically and independently distributed
from a distribution with mean zero and finite variance, »,. Here, X, is assumed to be
non-diagonal to account for cross-sectional dependence in the idiosyncratic error term. More

formal representation of the assumptions on our bootstrap method is provided below.

Assumption 1 \; are either deterministic such that || N;|]] < M < oo, or stochastic such
that E||X||** < M < oo for all i: E||f;,||** < M < 0o; Elei, |** < M < oo, for all (i,ty);

and for some ¢ > 1, E|gy|* < M < oo, for all t.

Assumption 2 E(ei|ys, Fi, i1, Fio1,...) = 0, and Fy = (fiijms .- fimkym)' and g are

independent of the idiosyncratic errors e; s, for all (i, sp,t).

Assumption 3 ey, = >0 bi s, j+ Uiy, , With Z;i1<l+|j|)r|¢i7‘j|8 < oo for somer > 0,

fori=1,..., N.

Assumption 4 ¥, = E(u,ui, ) = (Ouij)ij=1,..~5, With uy, = (Ui, , ..., unyg,)’, for all ty, i,

J and is such that Apin(3,) > ¢1 and Apax(3,) < co for some positive constants ¢, and cy.
Assumption 5 As N, Ty — oo such that log N/Tyg — 0,
log N
=0, (V45):
=0, (/')

Assumptions |1 and [2[ are similar to the Assumptions 6 and 7 in GP (2014), except

1 Ty
(a) max; j<n ’E Doty Wity Wik, — Ouij

(b) max;<n ’ ﬁ Zz;il Jen i,

that we need higher moments in Assumption We require a large number of moments

because our proof relies on repeated applications of Cauchy-Schwarz’s inequality to prove
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the validity of our bootstrap method under cross-sectional and serial dependence. If we
further assume that the factors, factor loadings, and idiosyncratic error terms are mutually

independent, then having E||\||® < M, E|f,,||® < M, and Ele;,, ' < M are sufficient.

|Assumption 2|justifies that we use wild bootstrap in the second step as the regression error

term is a martingale difference sequence. This assumption can be relaxed to allow for serial

correlation in the regression error term and block-based bootstrap can be applied as explained

in Djogbenou et al.| (2015). Furthermore, in [Assumption 3| we assume that idiosyncratic

error term is a stationary autoregressive (AR) process of infinite order with polynomial

decaying coefficients. In the proof of Section (3| (see Section C in Online Appendix), we

show that » = 4 is sufficient. Finally, [Assumption 4| and |[Assumption 5| are similar to

the CS and TS assumptions in |Gongalves and Perron| (2020) (on the idiosyncratic error
terms) and Gongalves et al.| (2024) (on the innovations of the idiosyncratic error terms). We
assume that the variance-covariance matrix of the innovation terms is time-invariant and the
innovation terms are weakly dependent in cross-sectional dimension. Under these additional
assumptions, we show the validity of the AR-sieve +CSD bootstrap method in the following

theorem.

Theorem 3.1 Suppose that autoregressive sieve with CSD (AR-sieve + CSD) bootstrap and
wild bootstrap are used to generate {e}, } and {e}}, respectively with E*|n;,,|* < C' for all
(i,tn) and E*|vy|* < C for all t, for some q > 1. If Assumptions A.1 - A.6 in Section A in

Online Appendiz and Assumptions |1|- E] hold,

sup |P*(VT(®56" — &) < z) — P(VT (6 — a) < 2)| 50,

xeRT+P
where ®f = diag(1, Hy, I,) with Hj = plim H* and H* = V*_lfT*—jAIA, which is a bootstrap

analogue of rotation matriz, H.
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4 Monte Carlo Simulation

In this section, we confirm the presence of bias in the factor-MIDAS regression models,
and show the finite sample performance of both inference methods we propose. The data
generating process (DGP) is similar to GP (2014) and |Aastveit, Foroni, and Ravazzolo

(2017). We consider the factor-MIDAS regression model with a single factor model as follows.

K
e =DBo+ B Y wil0) fiop/m + e, (16)
k=1
Xi,t—k/m = )‘ift—k:/m + Cit—k/m» k=m— L...,0. (17)
For a weighting function, wy(0), for k = 1,..., K, we use the exponential Almon lag with

two parameters, .

The factors and factor loadings are generated similarly to GP (2014). The single factor f;
is randomly drawn from a standard normal distribution independently over time. The factor
loading, \; is randomly drawn from a uniform distribution of the interval [0, 1] independently
across indicators, i. We consider that the high-frequency variable is observed at most 3 times
between ¢ — 1 and ¢ (equivalent to low-frequency data being quarterly and high-frequency
data being monthly), which implies m = 3. The parameters are 3y = 0, 5; = 2.5, §; = 0.007,
and f; = —0.01. We choose the weighting parameters similar to |Aastveit et al.| (2017) to
induce fast-decaying weights.

shows six different scenarios to generate the idiosyncratic error terms and MI-
DAS regression error terms. We consider the error term in the regression model to be either
homoskedastic or heteroskedastic. In DGP 1, we consider homoskedastic error term and
in the rest of the DGPs, the error terms are conditionally heteroskedastic. When they are

homoskedastic, the errors are drawn independently and identically from a standard nor-
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Table 1: Data generating process

DGP ‘ €t ‘ €ity
1 | N1 N(0,1)
2 | e = VI, N(0,1)
3 | e =V N(0,02)
4 |e=+vhwv | AR + N(0,02)
5 g = vVhwy | CS+ N(0,1)
6 | e =V CS + AR

where h; = 0.1 + 0.35?71 + 0.6h;—1 and
vy ~ 1i.d.N(0,1) for t = 1,...,T and t;, =
1,...,Ty.

mal distribution. To allow for heteroskedasticity, we assume that the error terms follow
a GARCH model, which implies that they are conditionally heteroskedastic but uncondi-
tionally homoskedastic. Particularly, we use the same process as in |Aastveit et al.| (2017):
g¢ = Vhyvy, where hy = 0.1 + 0.3 | + 0.6h;_1 and v; ~ i.i.d.N(0, 1).

For the idiosyncratic term in the factor model, we use the same data-generating pro-
cess in GP (2014). In DGP 1 and DGP 2, the idiosyncratic error terms are homoskedastic
by randomly generating them from a standard normal distribution. DGP 3 induces het-
eroskedasticity in the idiosyncratic term, where the variance for each indicator is drawn
from U[0.5,1.5]. DGP 4 introduces the serial correlation by generating the idiosyncratic
term from an autoregressive model of order one such that e;;, = pi€is,—1 + Uit,, Where
u;g, ~ 1.1.d.N(0,1). For simplicity, we let p;, = p for all i = 1,..., N, and p = 0.5. The
idiosyncratic terms are re-scaled by (1 — p?)!/2 so that the variance of the idiosyncratic error
terms is 1. DGP 5 allows for cross-sectional dependence in the homoskedastic idiosyncratic
terms as in GP (2014) and Bai and Ng (2006). Precisely, we let the correlation between

eir, and e;;, be 0.5 for |i — j| < 5 and 0 for otherwise. In DGP 6, the idiosyncratic
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error terms have both serial and cross-sectional dependence. The idiosyncratic error terms
follow the autoregressive process of order 1 with the innovation term being cross-sectionally
correlated. The idiosyncratic terms in DGP 5 and 6 are also re-scaled to have the variance
1, the same as in other designs.

To focus on the bias, which arises by the fact that the factors are estimated, we do not
estimate the number of the factors in the estimation process. Instead, we assume that we
know that there is a single factor. We report the size of the bias in a slope coefficient for
the single factor, £;. Mainly, we report two sets of results: based on asymptotic theory and
based on the bootstrap method. The bias based on asymptotic theory is reported when we
use the true factor, the estimated factor, and the plug-in bias estimator. We also impose
that we know Cov(e;y,,€it,—x) = 0 for £k > 1, and therefore we only compute the plug-in
bias estimator up to the first degree covariance term. The other set of results includes the
bias based on two different bootstrap methods: wild bootstrap (WB) and AR-sieve+CSD
bootstrap. For AR-sieve+CSD bootstrap, we choose a lag order for each series by AIC. Note
that the wild bootstrap is only valid when the idiosyncratic error terms do not have serial and
cross-sectional dependence, DGP 1 - 3. For the rest of the designs, the wild bootstrap is not
valid. Therefore, under more general settings (DGP 4 - 6), we can quantify the cost of not
accounting for either time-series or cross-sectional dependence or both in the idiosyncratic
error term by comparing two bootstrap methods.

To compute the size of bias, we use the approach described in GP (2014). The bias in
the original sample is calculated as the average of H 81 — f1. This guarantees each estimator
in the replication to be consistent for ;. In the bootstrap world, similarly, we compute
the bias of the bootstrap estimator as the average of HH*Bf — Hp;. We also report the

95% coverage rate for the associated estimators: estimated factors, plug-in bias and two
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bootstrap methods. The coverage rates associated with the bootstrap methods are reported
by using the bootstrap equal-tailed percentile-t method.

All our simulation results are based on 5000 replications and 399 bootstraps. We consider
T = 50,100,200 and N = 50,100, 200. Since the high frequency variable is observed m = 3
times more, the time-series dimensions in the factor model as 150, 300, and 600, respectively.
We choose K = 11, which implies that a low-frequency variable can be explained by 11 lagged
monthly factors.

Since the results of DGP 1 - 3 are very similar, we leave the results of DGP 1 - 2 in
the Online Appendix. The results of DGP 3 and 4 are presented in In both
scenarios, the MIDAS regression error terms are now heteroskedastic for both DGPs. The
idiosyncratic error terms are heteroskedastic in DGP 3. We find that there exists a bias
when we use the estimated factor and the plug-in estimator overestimates the magnitude
of the bias, especially in small samples. Both bootstrap methods outperform the plug-in
estimator in terms of replicating the bias size and correcting the distortion. In DGP 4,
the idiosyncratic error terms exhibit not only heteroskedasticity but also display serially
dependence. In contrast to DGP 3, the bias size increases as we introduce serial dependence
in the error term of the factor model, and it is about twice as large as that in DGP 3. This
is consistent with the asymptotic bias result in where time-series dependence
contributes to the bias. The plug-in bias is no longer overestimating the bias size

Comparing the two bootstrap methods, it is evident that AR-sieve+CSD bootstrap
method performs better than the wild bootstrap method in DGP 4 - 6. Note that the

wild bootstrap is no longer valid under serial dependence. In fact, for some sample sizes, the

13Tt is important to note that since the bias depends on the serial dependence, the persistence in the
idiosyncratic error term may also have an impact. We have observed that with an increase in persistence,
the bias also increases (documented in Table 1 in Section D in Online Appendix).
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Table 2: DGP 3 & DGP 4 - Bias and coverage rate of 95% Cls for

N =50 N =100 N =200
T =50 100 200 50 100 200 50 100 200
Ty =150 300 600 | 150 300 600 | 150 300 600
bias
True Factor 0.00 -0.01 0.00 |-0.01 0.00 0.00 | 0.01 0.00 0.00
Estimated Factor -0.37 -0.34 -0.32 |-0.22 -0.19 -0.17 | -0.12 -0.11 -0.10
Plug-in -0.41 -0.36 -0.35|-0.22 -0.20 -0.19 | -0.11 -0.11 -0.10
DGP 3: WB -0.27 -0.26 -0.26 | -0.17 -0.16 -0.15|-0.11 -0.10 -0.09
hetero & AR-sieve+CSD -0.26 -0.26 -0.25 | -0.17 -0.16 -0.15|-0.11 -0.10 -0.09
hetero 95% coverage rate
Estimated Factor 75.0 72.6  63.9 | 85.0 855 84.4 | 835 903 910
Plug-in 80.9 87.9 88.9 | 8.8 89.3 92.1 | 8.9 91.1 925
WB 91.7 94.2 92.7 | 926 935 94.1 | 91.3 939 938
AR-sieve+CSD 93.7 92.1 904 | 93.6 943 94.1 | 941 951 936
bias
True Factor 0.00 0.00 0.00 |-0.01 0.00 0.00 |-0.01 0.00 0.00
Estimated Factor -0.64 -0.57 -0.54 | -0.41 -0.35 -0.31 |-0.28 -0.21 -0.18
Plug-in -0.45 -0.42 -041/-0.26 -0.26 -0.25|-0.14 -0.14 -0.14
DGP 4 WB -0.22 -0.22 -0.22 | -0.15 -0.14 -0.14 | -0.10 -0.09 -0.08
hetero & AR-sieve+CSD -0.38 -0.37 -0.36 | -0.29 -0.26 -0.25|-0.22 -0.18 -0.16
AR 95% coverage rate
Estimated Factor 52.2 44.5 29.2 | 723 T71.8 67.3 | 81.5 85.0 &4.1
Plug-in 72.0 771 771 | 811 86.0 87.9 | 8.0 90.1 91.3
WB 82.8 79.4 68.7 | 89.0 88.8 86.1 | 89.6 924 91.3
AR-sieve+CSD 88.7 87.4 81.4 | 91.9 919 91.3 | 93.6 949 935

In DGP 3, both error terms are heteroskedastic. In DGP 4, the idiosyncratic error term is generated as the autoregressive
process of lag 1 for each variable and with heteroskedastic. For coverage rates, the results for estimated factors and plug-
ins are based on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile ¢ method.

wild bootstrap even performs worse than the plug-in bias, when it comes to compare the size
of the bias. We can also confirm that the AR-sieve+CSD bootstrap procedure outperforms

the plug-in bias and wild bootstrap procedure by comparing the results of coverage rates,
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particularly in small sample sizes.

Table 3: DGP 5 & DGP 6 - Bias and coverage rate of 95% Cls for 3

N =50 N =100 N =200
T =50 100 200 50 100 200 50 100 200
Ty =150 300 600 150 300 600 150 300 600
bias

True Factor 0.00 -0.01 0.00 | -0.01 0.00 0.00 | 0.01 0.00 0.00
Estimated Factor -0.37 -0.34 -0.32|-0.22 -0.19 -0.17|-0.12 -0.11 -0.10
Plug-in -0.41 -0.36 -0.35|-0.22 -0.20 -0.19|-0.11 -0.11 -0.10
DGP 5: WB -0.10 -0.10 -0.10 | -0.06 -0.06 -0.04 | -0.04 -0.04 -0.03
hetero & AR-sieve+CSD -0.16 -0.16 -0.16 | -0.10 -0.10 -0.10 | -0.06 -0.06 -0.06

CSD 95% coverage rate
Estimated Factor 75.0 726 639 | 8.0 855 844 | 8.5 90.3 91.0
Plug-in 80.9 87.9 88.9 | 86.8 89.3 921 | 8.9 91.1 925
WB 88.7 86.2 79.5 | 92.7 926 90.0 | 942 935 93.5
AR-sieve+CSD 90.9 90.0 87.0 | 93.3 94.1 923 | 943 939 937

bias

True Factor 0.00 0.00 0.00 | -0.01 0.00 0.00 |-0.01 0.00 0.00
Estimated Factor -0.64 -0.57 -0.54 | -041 -0.35 -0.31 |-0.28 -0.21 -0.18
Plug-in -0.45 -0.42 -041|-0.26 -0.26 -0.25]|-0.14 -0.14 -0.14
DGP 6: WB -0.08 -0.09 -0.08 | -0.06 -0.06 -0.05]|-0.04 -0.03 -0.03
hetero & AR-sieve+CSD -0.23 -0.23 -0.24 | -0.17 -0.16 -0.16 | -0.12 -0.10 -0.10

CSD+AR 95% coverage rate
Estimated Factor 52.2 445  29.2 | 723 71.8 67.3 | 81.5 85.0 &4.1
Plug-in 72.0 771 771 | 81.1  86.0 879 | 8.0 90.1 91.3
WB 76.5 66.2 474 | 875 84.2 776 | 91.1 915 89.3
AR-sieve+CSD 86.3 80.0 73.5 | 91.0 &89.8 87.1 | 932 932 926

In DGP 5 and 6, both error terms are heteroskedastic. In DGP 5, the idiosyncratic error term contains the cross-sectional

dependence. In DGP 6, we impose the dependence in both dimensions for the idiosyncratic error terms. For coverage
rates, the results for estimated factors and plug-in are based on asymptotic theory. The bootstrap coverage rates use the
bootstrap equal-tailed percentile ¢ method.

Finally, we present the results of DGP 5 and 6, which are shown in|Table 3| In DGP

5, the idiosyncratic error term is only cross-sectionally correlated. Comparing the size of
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the bias, the AR-sieve+CSD bootstrap performs better than the wild bootstrap method but
worse than the plug-in bias method. The AR-sieve+CSD bootstrap method recovers the
size distortion better than the plug-in method in most of the cases. The plug-in estimation
method performs better than the AR-sieve+CSD bootstrap method when N = 50 and
T = 200. In DGP 6, we allow for cross-sectional dependence as well as serial dependence in
the idiosyncratic error terms. The results follow a similar pattern to the findings of DGP
5. The plug-in bias method replicates the bias better than bootstrap methods. However, it
does worse than AR-sieve+CSD bootstrap in terms of recovering the size distortion in the
coverage rates except when 7' = 200. Furthermore, when the time series dimension is as small
as 50, the plug-in bias method performs even worse than the wild bootstrap method, which

is not valid in this design. Overall, the AR-sieve+CSD bootstrap works well in correcting

the distortion[!4]

5 Empirical Application

In this section, we apply the factor-MIDAS regression model to validate the presence of bias
in an empirical example. It is well documented that incorporating high-frequency indicators
to forecast a quarterly variable using the MIDAS regression model improves the forecast per-
formance (e.g., see/Clements and Galvao| (2008}2009), Aastveit et al.| (2017), Marcellino and
Schumacher| (2010), |Andreou, Ghysels, and Kourtellos| (2013), and |Beyhum and Striaukas
(2024)).

In this paper, we focus on nowcasting quarterly U.S. real GDP growth using monthly

MGimilar findings can be found when the AR-sieve+CSD bootstrap is used in the context of the unre-
stricted MIDAS regression model. The performance of AR-sieve+CSD bootstrap dominates the plug-in bias
estimation method in all DGPs. See Table 4 - 6 in Section D in Online Appendix.
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macroeconomic factors from 1984 Q1 to 2022 Q4 including great moderation period. We
have divided this period into two: the long period (1984 Q1 - 2022 Q4), which includes the
COVID pandemic period, and the short period (1984 Q1 to 2019 Q4). Although we look
into two different periods, the results are very similar; therefore, we present the results for
the shorter period in the Online Appendix. Our nowcasting model is similar to the model
in Beyhum and Striaukas (2024). Given the number of leading months, [ = 1,2, 3, we write
our model as follows.
Py K-l
Y = Bo + Z Pili—i + B Z Wk—1)+1(0) fr1-(j=1)/m + €1, (18)
i=1 k=1-1
where 3, is quarterly U.S. GDP growth rate. We denote common factors containing timely
information about monthly macroeconomic predictors by fi_i/m. The number of leading
months represents a nowcasting horizon, denoted by h. For instance, [ = 1 indicates that
we exploit information of one leading month; hence, we nowcast two months away (h = 2).
We use the exponential Almon lag with two parameters defined in for the lag polynomial
function. The quarterly U.S. output is obtained from a FRED-QD dataset (for detail, see
M. McCracken and Ngf (2020)). As U.S. real output is available in level in the dataset, we
compute the growth rate in percentage, by {In(GDP); —In(GDP);_;)} x 100. We also include
the lags of the growth rate in the regression. The number of lags of the dependent variable
is chosen by BIC, before we apply MIDAS regression. BIC selects one lag in the long period
and three lags in the short period.
To estimate the monthly factors, we utilize the FRED-MD datase (for detail, see
M. W. McCracken and Ng| (2016)). We consider 74 macroeconomic variables available for the

entire period and exclude all financial variables. Using PCA, we extract two common factors

15We use the ‘current’ version downloaded on October 3rd, 2023.
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in both periods. The information criterion proposed by Bai and Ng| (2002) (particularly, IC,)
chooses eight factors in the long period and five factors in the short period. Although the
information criterion chooses more than 2 factors, the two factors we extract explain more
than 60% of the variability explained by all the factors chosen by the information criterion
proposed by Bai and Ng| (2002).

Our primary goal is to verify the existence of bias in the estimators. Instead of focusing
solely on the forecasting performance of the factor-MIDAS regression model, we aim to
examine the behaviour of the estimators, particularly their 90% confidence interval. We
present three sets of confidence intervals, one based on asymptotic theory and the other two
based on the bootstrap method. We use two different bootstrap methods for resampling the
idiosyncratic error terms in the factor model: wild bootstrap and AR-sieve + CSD bootstrap,
described in We also rotate the bootstrap estimators, Bf , with the rotation matrix
H* as in GP (2014) and |Gongalves and Perron|(2020).

In we present the confidence interval for the point estimates in the long period,
1984 Q1 - 2022 Q4 for each nowcasting horizon, h = 2,1, and 0. We also report the estimate
associated with each parameter on the top of the three confidence intervals. We can find
that there exists a bias in the estimators associated with the factors. For example, the
point estimate associated with the first factor for horizon h = 2 is 2.54. The confidence
interval of this estimate is centered around 2.54, but the bootstrap interval shifts to the
right, suggesting a negative bias. The results are similar for the other horizons, h = 1 and
0. Although the second factor is not significant at h = 2, we can confirm that there exists a
bias in the estimator associated with the second factor at h =1 and h = 0. When h = 1, the
result implies a negative bias, whereas when h = 0, there exists a positive bias, shifting the

interval to the left. Comparing the two bootstrap methods, there is a small change in the
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Table 4: Estimates in the long period (1984 Q1 - 2022 Q4)

h=2 | h=1 | h=0

0.90 0.83 0.99
Asymptotic | 0.67 1.01 | 0.67 0.99 | 0.78 1.21
constant WB 0.71 098 | 0.69 0.95 | 0.73 1.28
AR sieve+CSD | 0.71  0.98 | 0.69 0.94 | 0.75 1.26

2.54 3.79 1.87
Asymptotic | 1.64 3.44 | 2.97 461 | 0.31 3.4
first factor WB 201 356 | 3.29 4.72 | 091 3.93
AR sieve+CSD | 2.13  3.54 | 3.34  4.80 | 0.90 3.39

0.04 0.36 0.95
Asymptotic | -0.22  0.30 | 0.08 0.65 | -1.47 -0.43
sz(;(zgf WB 0.17 037 | 0.14 0.75 | -1.62 -0.01
AR sieve+CSD | -0.12  0.38 | 0.16 0.77 | -1.63 -0.21

-0.30 -0.30 -0.58
Asymptotic | -0.54 -0.06 | -0.52 -0.09 | -0.87 -0.28
Y1 WB 2049 -0.12 | -0.44 -0.14 | -1.25 -0.26
AR sieve+CSD | -0.49 -0.12 | -0.43 -0.14 | -1.22 -0.25

The interval based on the asymptotic theory is obtained by adding and subtracting 1.645
times the heteroskedasticity robust standard errors. The confidence intervals based on
bootstrap methods are obtained with equal-tailed bootstrap intervals with a bootstrap
number 4999. WB indicates that we use wild bootstrap and AR sieve + CSD indicates
that we use the bootstrap algorithm described in[Section 3|

bootstrap confidence intervals of the estimators associated with the two factors. However,
the difference is not huge, indicating that the serial and cross-sectional dependence in this

example may be small.

6 Conclusion

In this paper, we derive the asymptotic distribution of the estimators in the factor-augmented

MIDAS regression models. We find that there exists an asymptotic bias arising from the fact
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that the factors are latent and must be estimated. We show that the bias depends on the
serial dependence as well as the cross-sectional dependence of the idiosyncratic error term
in the factor model, because MIDAS temporally aggregates the factors and their lags. We
propose two inference methods that account for this bias: an analytical bias estimator based
on the bias formula derived and a bootstrap method. Both inference methods are robust to
serial and cross-sectional dependence.

Although our simulation results support the theoretical findings, the bootstrap method
more effectively corrects the size distortion in the coverage rates, while the plug-in method
outperforms the bootstrap method in estimating the size of the bias, especially in small
samples. We further apply the factor-MIDAS regression model to nowcast quarterly U.S.
GDP growth rate using monthly macroeconomic factors. Our empirical results indicate that
there exists a bias in the estimates associated with the estimated factors.

Our results can be extended to the context of forecasting, such as to construct forecast
intervals, similar to |Gongalves, Perron, and Djogbenou| (2017), where they construct it in
the context of the factor-augmented regression models without mixed frequency datasets.
By letting g7r.1 = g(F'T, &) be the forecast of yry; based on information up to time 7', we

can decompose the forecast error as

Gran — Yres = —ege1 + %%ﬁm —a)+ Tlﬁﬁ'ﬂlmme) _HE(9)) + 0,(1).

This underscores the importance of the asymptotic distribution of the estimators derived
in this paper in constructing to construct the forecast interval. We leave this for future
research.

An interesting extension involves the use of machine-learning techniques. Machine learn-

ing techniques are popularly used to handle high-dimensional data. Along the same lines,
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Babii, Ghysels, and Striaukas| (2022) propose a machine learning regression by applying the

sparse-group LASSO technique for mixed-frequency data.

Acknowledgement

We would like to thank John Galbraith, Eric Ghysels, Silvia Gongalves, and Benoit Perron
for the advice. We also want to thank participants at the Canadian Economic Association
(2022), International Symposium on Econometrics Theory and Applications (2022), and
Canadian Econometrics Study Group (2023).

Computations were made on the supercomputer Beluga from McGill University, managed

by Calcul Québec and the Digital Research Alliance of Canada.

References

Aastveit, K. A., Foroni, C., & Ravazzolo, F. (2017). Density forecasts with midas models.
Journal of Applied Econometrics, 32(4), 783-801.

Andreou, E., Gagliardini, P., Ghysels, E., & Rubin, M. (2019). Inference in group factor
models with an application to mixed-frequency data. Econometrica, 87(4), 1267-1305.

Andreou, E., Ghysels, E., & Kourtellos, A. (2010). Regression models with mixed sampling
frequencies. Journal of Econometrics, 158(2), 246-261.

Andreou, E.; Ghysels, E., & Kourtellos, A. (2013). Should macroeconomic forecasters use
daily financial data and how? Journal of Business & Economic Statistics, 31(2),

240-251.

31



Babii, A., Ghysels, E., & Striaukas, J. (2022). Machine learning time series regressions
with an application to nowcasting. Journal of Business & Economic Statistics, 40(3),
1094-1106.

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1),
135-171.

Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models.
Econometrica, 70(1), 191-221.

Bai, J., & Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for
factor-augmented regressions. Econometrica, 74(4), 1133-1150.

Bai, J., & Ng, S. (2013). Principal components estimation and identification of static factors.
Journal of Econometrics, 176(1), 18-29.

Beyhum, J., & Striaukas, J. (2024). Testing for sparse idiosyncratic components in factor-
augmented regression models. Journal of Econometrics, 244 (1), 105845.

Bi, D., Shang, H. L., Yang, Y., & Zhu, H. (2021). Ar-sieve bootstrap for high-dimensional
time series. Retrieved from https://arxiv.org/abs/2112.00414

Bithlmann, P. (1997). Sieve bootstrap for time series. Bernoulli, 123-148.

Clements, M. P., & Galvao, A. B. (2008). Macroeconomic forecasting with mixed-frequency
data: Forecasting output growth in the united states. Journal of Business € FEconomic
Statistics, 26(4), 546-554.

Clements, M. P., & Galvao, A. B. (2009). Forecasting us output growth using leading
indicators: An appraisal using midas models. Journal of Applied Econometrics, 24(7),
1187-1206.

Djogbenou, A., Gongalves, S., & Perron, B. (2015). Bootstrap inference in regressions

with estimated factors and serial correlation. Journal of Time Series Analysis, 36(3),

32



481-502.

Ferrara, L., & Marsilli, C. (2019). Nowcasting global economic growth: A factor-augmented
mixed-frequency approach. The World Economy, 42(3), 846-875.

Foroni, C., Marcellino, M., & Schumacher, C. (2015). Unrestricted mixed data sampling
(midas): Midas regressions with unrestricted lag polynomials. Journal of the Royal
Statistical Society Series A: Statistics in Society, 178(1), 57-82.

Ghysels, E., Santa-Clara, P.; & Valkanov, R. (2004, 06). The midas touch: mixed data
sampling regression.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2005). There is a risk-return trade-off after
all. Journal of Financial Economics, 76(3), 509-548.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2006). Predicting volatility: getting the most
out of return data sampled at different frequencies. Journal of Econometrics, 131(1-2),
59-95.

Ghysels, E., Sinko, A., & Valkanov, R. (2007, 02). Midas regressions: Further results and
new directions. Fconometric Reviews, 26, 53-90.

Ghysels, E., Valkanov, R. I., & Serrano, A. R. (2009). Multi-period forecasts of volatility:
Direct, iterated, and mixed-data approaches. In Efa 2009 bergen meetings paper.
Gongalves, S., & Perron, B. (2014). Bootstrapping factor-augmented regression models.

Journal of Econometrics, 182(1), 156-173.

Gongalves, S., & Perron, B. (2020). Bootstrapping factor models with cross sectional de-
pendence. Journal of Econometrics, 218(2), 476-495.

Gongalves, S., Perron, B., & Djogbenou, A. (2017). Bootstrap prediction intervals for factor
models. Journal of Business & Economic Statistics, 35(1), 53-69.

Gongalves, S., Koh, J., & Perron, B. (2024, 11). Bootstrap inference for group factor models.

33



Journal of Financial Econometrics, nbae020.

Kim, H. H., & Swanson, N. R. (2018). Methods for backcasting, nowcasting and forecasting
using factor-midas: With an application to korean gdp. Journal of Forecasting, 37(3),
281-302.

Kock, A. B., & Callot, L. (2015). Oracle inequalities for high dimensional vector autore-
gressions. Journal of Econometrics, 186(2), 325-344. (High Dimensional Problems in
Econometrics)

Krampe, J., Kreiss, J.-P., & Paparoditis, E. (2021). Bootstrap based inference for sparse
high-dimensional time series models. Bernoulli, 27(3), 1441 — 1466.

Kreiss, J.-P., Paparoditis, E., & Politis, D. N. (2011). On the range of validity of the
autoregressive sieve bootstrap. The Annals of Statistics, 39(4), 2103-2130.

Ludvigson, S. C., & Ng, S. (2009). A factor analysis of bond risk premia (Tech. Rep.).
National Bureau of Economic Research.

Marcellino, M., & Schumacher, C. (2010). Factor midas for nowcasting and forecasting with
ragged-edge data: A model comparison for german gdp. Ozford Bulletin of Economics
and Statistics, 72(4), 518-550.

McCracken, M., & Ng, S. (2020). Fred-qd: A quarterly database for macroeconomic research
(Tech. Rep.). National Bureau of Economic Research.

McCracken, M. W., & Ng, S. (2016). Fred-md: A monthly database for macroeconomic
research. Journal of Business & Economic Statistics, 34(4), 574-589.

Meyer, M., & Kreiss, J.-P. (2015). On the vector autoregressive sieve bootstrap. Journal of
Time Series Analysis, 36(3), 377-397.

Monteforte, L., & Moretti, G. (2013). Real-time forecasts of inflation: The role of financial

variables. Journal of Forecasting, 32(1), 51-61.

34



Online Appendix for “Inference for Factor-MIDAS
Regression Models”

Abstract

presents the primitive assumptions necessary for proving the results
in the main text. Appendices|B|and @ provide the proofs of the results in the main

text. Appendix presents the bootstrap procedure for the factor-MIDAS regression
model. contains additional simulation results. Finally, in we

include an additional empirical result, which is omitted from the main text.



A Primitive assumptions

This section delivers the primitive assumption for asymptotic theory. The factor-augmented
MIDAS regression involves two frequencies, thus we use two time indices: t, = 1,...,Ty
denotes the high-frequency time index and ¢ = 1,...,T denotes the low-frequency time
index. Particularly, we use a subscript h to denote high-frequency time index (e.g. s; also

denotes the high-frequency time index).
Assumption A.1 (Factors and Factor Loadings)

(a) fi, are stationary with E|f.,||* < M and ﬁZTH fo It 5 Y¢ > 0, where Xy is a

th=1

non-random r X r matrix.

(b) The factor loadings X\; are either deterministic such that | \;|| < M, or stochastic such
that E|N||* < M. In either case, NA/N L S\ > 0, where Sy is a non-random

matriz.
(c) The eigenvalues of the r x r matriz (X,Xy) are distinct.

(d) f'f/Tg = 1. and N'A is a diagonal matriz with distinct entries, where f = (f1,..., fry)

Assumption A.2 (Time and Cross Section Dependence and Heteroskedasticity)

(a) E(eis,) =0,Ele;, |2 < M.

(b) E(ei7the.j’sh) = Oijtnsns |O-ij7th5h| < 5ij fOT’ all (thvsh) and |aij,th8h| < Ttpsh fOT all (173)

LN - 1 N~Tu 1
such that 3705y <M, 7-3° Tonsn < M, and =32, o |00, < M.

th,sp=1

_ 4
(c) For every (th,sh),E‘N 1/2 Zi]L(ei,thei,Sh — E(ei,thei,8h>>‘ <M.



(d) E(eit,€j,) = 0i; and E(e;t, ej,—k) = 0k for all t and k.

Assumption A.3 (Moments and Weak Dependence Among {f;, },{\;} and {e;.,})

N T
((1,) E (% Zi:l H ﬁ Ztthl fthei,th

2
) < M, where E(f,eis,) =0 for all (i,t).

2
<M.

N
(b) Por cach th, B | g X0 X5, fo(eianion = Eleiny i)

2
(¢c) E H\/ﬁ 23;1}121 ftheghAH < M, where E(fy, Neir,) =0 for all (i,tp).

2
(d) E (ﬁ Z;LH:1 \/LN SN Neia, > < M, where E(Neis,) =0 for all (i,tp).

(e) As N — oo, % Efil Zjvzl AiXseq €5, =T Ly 0 andT = limy o, Var (\/LN Zf\il )\ieiyth>.
Assumption A.4 (Serial Dependence between {f:,}, {\;} and {ei.,})

T P , :
(a) ﬁ dointy foft,—x = Xpk, where Xpy is a non-random r X r matriz.

2
(b) For each ty, and all k, E H \/’.Iﬁ zle Zf\il fsn (€t €65 —k — E(eivthei,sh—k))H <M.

2
(c) E H\/]\}TH Z;Hzl fthegh_kAH < M, where E(fi, Nieir,—x) =0 for all (i,t,) and all k.

. Ne Ney,
(d) As N — oo, % Zf\il Zjvzl AiNi€it, €56, —k—Lk 250 and Ty, = limy_,o, Cov < \/%7 x/t;LV k)

Assumption A.5 (Weak Dependence Between Idiosyncratic Errors and Regression Errors)

2
(a) For each t, E ‘ﬁ S et Doit s(Cotgymeiss—ipm — BlCisjmeis jm))| <M forj =
0,...,m—1.

2

(b) EHﬁ Zthl Zfil Ni€it—jmet]| < M, where E(Nie;i—jmer) = 0 for all (i,t) and

7=0,...,m—1.




Assumption A.6 (Moments and CLT for the Score Vector)
(a) E(g;) =0 and E |g,|* < M.

(b) E ||ga,tH4 < M and %Zthl 9o,t9ent Lo > 0 where Gat = 0g(Fi, )/ Ocr.

2

(¢c) AsT — oo, \/LT S Gaut N N(0,9Q), where E‘ <M

1 T
T D i1 Ya et

and Q = limp_,o, Var <¢LT ST ga,té‘t> > 0.

Assumption are standard assumptions on the factors and the factor loadings in the

factor analysis. Additionally, we assume that the factors are stationary. This is to allow

Yy = plim ﬁ ZZ;H:1 Jeoft, = plim Zthl fe—jjmfi_jjm» for all j. Assumption A.1{(d) is one

of the identifying restrictions from |Bai and Ng| (2013). By imposing this assumption, the
rotation matrix Hy is a diagonal matrix of £1, where the sign is determined by ff /Th.
However, since the true factors are unknown, we still do not know the sign of the rotation
matrix.

Assumption and Assumption can be found equivalently in |Gongalves and Per-
ron| (2014) (henceforth, GP (2014)) (their Assumptions 2 and 3, respectively). In Assump-
tion[A.2] we allow weak cross-sectional and serial dependence in the idiosyncratic error terms.
In Assumption we impose some moment condition between the factors, idiosyncratic
error terms, and the factor loadings. We also allow some weak dependence among them.
Due to the MIDAS structure, where the lags of the factors are used, we also allow some serial
dependence between them in Assumption This set of assumptions is new in the context
of the factor-augmented regression models. In particular, Assumption(d) allows for the
serial dependence in the scaled average over cross-sectional dimension of factor loadings and

idiosyncratic error term in the factor model.



We impose some weak dependence between idiosyncratic error terms and the regression
errors in Assumption This Assumption is equivalent to the Assumption 4 in GP (2014).
Assumptionimposes some moment condition on {e;} and the score vector g, ;. Assump-
tion(b) requires that we can apply a law of large numbers on {ga.g;,,}. By introducing
Assumption (c), we can apply a central limit theorem on {g,:}. Similar assumptions
to Assumption [A.5]and[A.6] can be found in GP (2014).

B Proof of results in Section 2

In this section, we prove the asymptotic distribution of NLS estimators in Theorem 2.1 and
Theorem 2.2, the consistency of the variance-covariance of the cross-sectional average of the
factor loadings and idiosyncratic error term across time for the plug-in bias estimator. To

prove the asymptotic distribution, we use the following lemmas. The proof for the following

lemmas |Lemma B.1|to[Lemma B.3|can be found at the end of proof of Theorem 2.1.

Lemma B.1 237 &(Fi(0) — HF,(0)) = o0,(1).
Lemma B.2 Forj,1=0,...,m —1, if VT/N — ¢, where 0 < ¢ < 00,
(@) 5 Yies(Fimjm = HE ) (fimm — H fr—yjm) = ¢V " HDHV ™! 4 0,(1),
() 5 i (Fisim = H fojpm) Fimipm = Hfropm) = eV HE HV ! 0,(1) for j # 1,
(c) \/LT 25:1 Hft—j/m(ft—j/m — Hfijm) = cHITQ'V ™2 4+ 0,(1),
(d) S5 3 Hfotym(Feipm = H frgym) = cQsiLQV "2+ 0y(1) for j #1.

Lemma B.3 If \/T/N — ¢, where 0 < ¢ < 00,



(a) J= 3oL, (Fi(0) — HF(0))(F(0) — HF,(6))'

= VQ{ I wnO)Pwn(0) + XIS, S wn(O)Te-run(8) } V1 + 0,(1),

() Jr I (Fi(6) — HE(O)(HF(0))
= (L w0 H + X5 Sl e 0)Qe-nun(0) | TQV 2 4 0,(1).

Note that we write F}(0) = S1_, Wi (0) fr—km» where wy,(0) = diag(w,1(01), - . ., Wiy (0;))
is a r x r diagonal matrix. We also define dyp,, = min(v/N, v/Ty). We first prove Theorem

2.1 and then we prove Lemmas -

Proof of Theorem 2.1. As the NLS estimators & maximizes the objective function

Qr(a) = —% ZtT:l[yt — g(F,, a)]?, we have
- 1 - T
VI = o) = =|7 2 HR, ar)] f > s(Fiv0), 1)
where ar is the intermediate between & and o and H(F}, @) is a hessian matrix and s(Fy, a)
is a score vector. For deriving the asymptotic distribution, we analyse the convergence of

each term. Let g,(-) = 0g(-)/0a. We write the term with a score vector as follows.

T
ONLTE

5t + B H ' (HE(0) - F(0))]ga(F, )

3\

5t+6/H (HF(0) —Ft(G))](%ga(Ft,a)JrPt),

3\

where where &y = diag(1, Ho, I,) and Hy = plim H and P; is a (1 + 7 + p) x 1 vector such

that
] 0 _
P = E,(0) — HF,(0) ,
(Y0 m - 20 )



with 8FK9

<8F1 t(al) 8Fr,t(07“)

= diag v"'va—er) is a r X r block-diagonal matrix. k-th block is

8Fk7t(0k)/89k, which is a p; x 1 column vector, for j =1,...,r. Under Assumptionand

Lemma B.1} we have \/LT S ega(E Q) 4 N(0,9oQ2®;). The remaining term drives the

bias in Theorem 2.1. Note that the bias exists in the slope coefficients §; and the weighting

parameters . With respect to 31, the remaining term is as follows.

TZF JHF,(0) — E,(0)]H 3

~

= S(R(6) ~ HEO)(F(6) ~ HE( Z HE(60)(F(6) — HE(0))' | HV 6,

V_IH {Z wk(G)ka(Q) + Z Z wk(Q)Fk_lwl(Q)} HV_l

k=1 k=1 l#k

~

= —c

+ {Z wi(0) Hwy(0) + ) > wk(Q)lewl(G)} I'Q'V~2| plim(5,)
k=1 k=1 1#£k
= —cBg, +0p(1), (2)

where plim(3,) = H~" ;. The second equality follows by applying Similarly,

with respect to 6, we have

1 < OEO) .
ﬁ; S BV BB H T HE(8) — Fi(0)
= H o > R@)E@) - HEOHS

K Owy( Owy(
vlﬂ{ L ZZ a rklw,(e)} HV !
k

=1 k=1 l#k

+ { au(;ke(e) Hwk(e) + Z Z 811();9(9) Qk_lwl(O)} FQ/V_2

k=1 k=1 I#k

plim(f;)




where ﬁ’tﬂ (0) = <%, o %@)l. To apply the lemmas, we use the Hadamard product
such that (A o B);; = A;;B;;. By applying Hadamard product, we have aFt 0) H'p =
H'Bo Ft,9(9> to obtain the first equality. Then, we apply |Lemma B.3|for the second
equality. Finally, we have \/LT ST s(Fa) 4N (—cBa, Po2P)). Next, we derive the term

with Hessian matrix. First, we rewrite the first term in as follows.

1 « d 8%g(Fy, d E ) 09(F;, )
= (Fy,a) = + B H Y (HE(0) - F(0)| 20 = i
T tZ1 t Z [gt t ] Ooado! Z oo

Under Assumption |A.6 and |Lemma B.1} 7 Zt LEt aag;a) = 0,(1). We can also show that

-1 ST BHY(F(9) — HFt(Q))E)Qg(F“O‘) = 0,(1). Finally, for the second term, we have

dada’
T
Ft7 ag Ft7 )
g S g = 205 + 0,(1) (4)

where X = F [MM} by replacing ag( 1) with @, 29 Ft 99tl'0) L p, Then, by|Lemma B.2

we have %ZtT:lga(Ft,a)Pt’ = 0,(1) and %Zthl P,P] = 0,(1). By plugging the terms, ,

(3), and @) into (), we have VT (@ — a) & N(—c(®oE®)) ' Ba, @y 'S0 1051). =

Next, we prove [Lemma B.1JB.3] which we used to prove Theorem 2.1. We can obtain

by applying the arguments in the proof of Lemma 1.1 in GP (2014). The proofs

for (a) and (c) in are also similar to the proof of Lemma A.2 - (a) and (b) in GP
(2014). Therefore, here, we show the proof for (b) and (d) in While we employ

similar arguments to those in GP (2014) to prove (b) and (d), our proof relies on a new
set of assumption, specifically Assumption A.4. This highlights the importance to account
for serial dependence in the idiosyncratic error term in our framework, representing a novel

contribution to the literature.

Proof of [Lemma B.2| - (b).  First, we use the identity for the factor estima-




tion error in GP (2014) such that f,, — Hfth = V1 (Ayy, + Aoy, + Asyy, + Asyy, ), where

_ 1 — 1 — 1 —
Al,th - E sp= 1fsh75ht;L Ach - TH fsthhth A3th - TH fshnshth’ a‘nd A4th -

TH Z fshﬁshth Each term in A;;, for i = 1,2, 3,4 denotes the following: vs,,, = F (% Zf\il ei,shei,th),

I
; Negy, Aesh N

N
Cshth - % Zi:l (eivsheiﬂfh - E(6i75h6i7th))7 Nsptn = Jsp, N and gshth f

= N,s,- Under

this identity and using the low-frequency notation, we have

1

T
ﬁ Z(ft—j/m - Hft—j/m)(ft—l/m - Hft—l/m)/
t=1
1 o[-
ﬁ Z |:V_1<A17t7j/m + A2»t7j/m + A?’:t*j/m + A47t7.7'/m)
t=1

X (Avg—im + Azp—iym + Asi—i/m + A4,t—l/m)/‘7_1] )

for y =1,...,m—1. We analyse the convergence limit of each term, respectively. The proof

is similar to the proof of Lemma A.2 - (a) in GP (2014). By applying the Cauchy-Schwarz in-

%Z;le Al,t—j/mAll,t—l/mH < (% Zf:1||A1,t_j/ml|2> v (% ZtT1||Al,t—l/m||2>1/2 =
0,(1/T), by Assumptions |A.1|and [A.2| This implies % ZtT:l AvpjmAL ) = 0p(1). We

%ZL AQ,t—j/mA/Q,t—l/mH < (% ST HA27t_j/mH2>1/2 (% ST HAQ,t_l/mH2)1/2 —
Op(N 1057, ) by Cauchy-Schwarz. We also use S Ao jiml? = Op(N71647, ) by As-

equality, we have

sumption |A.2| and ﬁz% fe = HE? = Op(éj_VQTH) in |Bai and Ng| (2006). Again, this

implies \/LT S Ag ymAy; 1ym = 0p(1). Similarly, we can show all the terms are neg-

ligible, except the term %Z?zl Asi—jymAs; i/ In fact, this term is Op(1/N), which is
non-negligible when it is multiplied by v/7' under our assumption, /7T /N — c. To see this,

we first rewrite the term as follows.

1 T 1 <4 1 &, - /
T ; A3,t—j/m‘4g5,tfl/m =7 ; <E ;(fs —Hf,+ Hfs)ns,t—j/m> (E ;(fs —Hf,+ Hfs)ﬁs,t—l/m>

= bs31 + bgzo + by o + D333



The first term b33 ;1 is bounded by (ﬁ 2351 Hfs — HszQ) <ﬁ Zthl ESTi’l !ns,t_j/mﬁs,t—z/mD

by applying Cauchy-Schwarz inequality. This is O,(N~'047, ) by ﬁ S szzl Nsp,t—j/m|?> =
O,(N~1) under Assumption Similarly, the second term is bounded by Cauchy-Schwarz

(o= H1)|) (2 S 24 ot smitoa-iml ) = Op(N 1335,
Then, the final term is bggs = H <%> [% ST (Afa&j/m> (e;,%mA)} ( %) H = O,(N)

by Assumption Thus,
Z A Ct— ]/m 6;—l/ml\
T VN

where we use = I, by Assumptions|A.1t(d) and|A.4}(d). Finally, we have \/LT Zthl(f:t—j/m—

such that b33 o < (ﬁ 2351

VT35 = H = cHT;_ H + 0,(1),

Hﬁﬁmﬂﬂwm Hf™), Y = V- BT, (HV " 4 0,(1). m

Proof of - (d). The proof is similar to the proof of Lemma A.2 - (b) in

GP (2014). By using the identity we use in the proof of [B.2}(b), we have

T
Z ft l/m ft —j/m — Hftfj/m),: \/_th l/m Alt J/m+A2t ]/m+A3t J/m+A4t ]/m) V_l

3\

= \/TH(dfl + dfg + dfg + df4)‘~/_1

We show the convergence limit for dy;, for ¢ = 1,2, 3,4. We can show that all the terms except
dy4 is negligible. For example, df; = O,(0yy, T~ /%) +0,(T"). To show this, we first rewrite
dfl as % Zthl ft—l/m (ﬁ Zfiﬁ(fs - Hf8>/'78,t—j/m> +% Zt:l ft—l/m (ﬁ ngl f;’Ys,t—j/m) H'.
The first term of dy is Op((;;,ITHTfl/Q) by applying Assumptions|A.1fA.2|and TL ZSh L fs—

Hf|?* = Op(éj_VQT ). The second term is O,(Tj;") by Cauchy-Schwarz inequality and Assump-

tions and [A.2] - We can also show that ||dss|| = O,((T'N)~%/2) by showing

=3 H Zt L fr—tymGo— ]/mH = O,((TN)~!) under Assumption|A.4f(b). The third term

T

is also bounded by Cauchy-Schwarz inequality such that ||dss]| = O,((NT)~*/2) and by ap-
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plying Assumption (C) Finally, we decompose the last term into two parts as follows.

1 & 1 g 1 &
J— £ / ! !
df4 = T tz; ftfl/m (T_H Z(fs - Hfs) fs,tj/m> + ? ; ftfl/m (T_H ; fsg&tj/m) H

s=1

= df4.1 + df4.2.

By rearranging the second term, we have d ¢4 2 = \/#7]\[ <% 23:1 ft—l/mftlfj/m> (x/TT ZTH Ne sfs) =

O,(1/(\/TuN)) by Assumptions (1) and (c). We can also rearrange the terms in

the first term and write it as follows.
T Ty
1 1 ~ ANe
dig1 = — E “Um | =— E s — Hf,) u
f441 T pa ft l/ TH = (f f) (ft j/m N )

1 T ) 1 A/
= f;ft—l/mftj/m THZ N (f Hf) ) -

s=1

This is O,(1/N) under our assumptions. By using ﬁZZHl A]\?S(f Hf,) = &+

0,(1))Q'V ™1, from the proof in GP (2014), we have

T
\/Tde4.1 =H (% ; ft_z/mft'_j/m> <§(F + op(l))Q/v1> = cQ; . TQ'V™" + 0,(1)

Thus, VTdpa V' = eQuulQ'V " 40,(1), where Qi = 5 Yy fijymfitim = 7y 02 Jefimti--

11



Proof of|[Lemma B.3|- (a). We write the equation as follows.
T
>_(F 0))(Fi(0) — HF(0))
t=1
/
Zw] ft —j/m — Hftfj/m ] [Zw] ft j/m — Hft]/m)]

T
_T > (Freijm = Hfrjm) frjim — Hft—j/m)/] w;(6)
t=1

3~

aw

ij

M=

J

K K 1 T R ]
+ wi(0) |—= Y (fimj/m — Hfr—jm)(fr—tym — H fr—iym)’ | wi(0)
2 200 | g s = s = )
:cV_lQ{ZwJZ F+Zzw3 L qwy (6 }QV + 0p(1).
Jj=1 J=1 1#j

By applying Lemmas (a) and (b), the result follows immediately. m

Proof of - (b). Similar to previous proof, we rewrite the equation as

follows.
% S HE(6)(F(9) — HE(9))
Z wj(e)Hftj/m)] [Z w; (0)(frmjm — Hftj/m)]

| ;
ﬁ Z Hft—j/m(ft—j/m - Hft—j/m),] wj(e)
t=1

MNEH

:2
£ o
=1 1#j

= {Z wiO)H+) ) wj(e)cgj_,w,(e)} TQV2 +o,(1).
j=1 J=1 I#j

By applying Lemmas (c) and (d), the result follows. m

wl(G)

T
1
ﬁ E Hfi- I/m ft —j/m — Hft—j/m)/
t=1

Next, we prove Theorem 2.2 and Proposition 2.1. To prove Theorem 2.2, we first prove the

case when there is no cross-sectional dependence (only serial correlation) in the idiosyncratic

12



term in the factor model, and then we prove when the cross-sectional dependence is allowed.

Proof of Theorem 2.2.

If the idiosyncratic terms are serially correlated, but not cross-sectionally correlated, note
that Ty = lImpy_eo % Zf\il NN, E(ei4,€it,—k). Recall that the estimator for I'y under serial
dependence without cross-sectional dependence is fk = m ZZLsz 41 Zf\il S\iS\;éi,th City—k-
To show that T'y— Hy YT, Hy' — 0, we can use the arguments in the proof of Theorem 6 in|Bai
(2003). In fact, we can use the fact that é;;, = e;, +Op((5;,1TH) and \; = HV)\; ~|—Op((5;,1fH),

and rewrite fk as follows.

Ty N
- 1
Fk = H_I/— )\i>\;6i,t €it _kH_l +o (1)
N(Ty — k) thzk—&-l 'LZI S !

1
Ty—Fk

I — Hy VT H B 0.

) T,
Since we have ZthH:kJrl eit,Cit—k — Eleis,eir,—r) and H — Hy, we can show that

Next, we prove the case when the idiosyncratic terms are serially and cross-setionally

correlated, we can use the arguments in the proof of Theorem 4 in Bai and Ng| (2006). Un-

. . ~ . 1 TH ~ ~
der|Assumption A.2|- (d), we have 0;;, = E(€;y,€j1,—k)- Let &ij, = TR Zth:kﬂ €ity City—k

and T = %Z?:l Z?:1 oijeNiNj. By the definition, T'y = limy oo Tnp.  Let Cop =

% > Z;”Zl Gij AN Then, we can write
I, —H VT W H ' =T, —H VT, H '+ H VT — o) H P+ H Y (D — Do) H L

Since I'y is the limit of I';, , we have I',, — Iy — 0. The remaining parts to show are

Lok — Dok 20 if n/N — 0 and n/Ty — 0 and [y — ]EV*FI_},M-]*1 2 0. We first rewrite

13



'y i — Dy as follows.

3 1 n n B
Lo —Tni= - Z Z(Uz’j,k — Oijk) NN

i=1 j=1
1 n n 1 Ty
/
= — g g g €it,Citn—k — Oijk) N\
n LTy —k (Zth w)z]
i=1 j=1 th=k+1
n n T
5 P) DRI ST TR
- = Citn\Citn—k — Citp—k)NiN;
n 4 4 TH _ ]{ Lth \~"D5th Jslh 7%
i=1 j=1 tp=k+1
n n T
5 9) DL STPRICIE e
—_ — e‘,t _k C',t J— C',t . .
n 4 . TH —k Jsth (73 1,lp ) Mg
i=1 j5=1 th=k+1
n n T,
1 1 a B 5 ,
+=303 T Y (Citn = i) (Chanmt — Chan—r) NiN]
n < - H
=1 jil th:k+1

=+ II+IIT+1V,

where we obtain the second equality by using the decomposition such that €;4,€;+, —x =
€ityCitn—k — ity (Citn—k = Citn—k) — €jtn—k(Ciy, — City,) + (City, — Ci,)(Cjty—k — Cjit—k), Where
Ciny = M fy, and ¢y, = Nofi,. We can show that I is O,((Ty — k)~"/2) since it is zero mean
process. By using ¢;;, — &, = (H™V\; — S\j)’fth + )\;Hfl(Hfth — fth) and following |Bai and
Ng| (2006), we have IT — 0 if \/n/Ty — 0 and n/d%5, — 0. Similarly, we have I1T — 0 as
n/ 6]2VTH — 0. Finally, for IV, by Cauchy-Schwarz inequality, we have

9\ 1/2 o\ 1/2

1
Tk

T
1
IV <
Ivis (7 >
th=k+1

tp=k+1

1 < _ 1 < _
% Z(Ci,th — Cip )i % Z(Cj,th—k = Citn—k)Aj
=1 =1

Since ¢y, — Giy,, = (H N — Xz)’ﬂh +NH ' (Hf, — fth), by using ¢, inequality,

1 Ty 2 1 Ty
<2 2
Ly <27 2 1)

2

1 ¢ i 1 < T
ﬁ Z(Ci,th - Ci,th))\ ﬁ Z )\Z(H 1 )\z — )\Z)I
=1 i=1

th=k+1 th=k+1
) 1 n 2 1 Ty ~ 9
relar (3300 g 3° - s
i=1 H th=k+1

14



The first term term and the second term converge to zero as v/n/T — 0 and n/Ty — 0.

The last remaining term is f‘k — H _llfmkH ~1. 'We can rewrite this term as follows.

n n

al ! = 1 NN ’
Dp = HV'TopH ' = =) 0> Gy — HVANH )
i=1 j—l
- - Yy 1 o - -
:—ZZO—W o) NN, — HYANNH ™) + = (AN,
=1 j=1 nz 1 j=1
=I+1I

Then, I — 0 using the fact that it is zero mean process. We decompose the second term 17

as follows.

1 n n ~ - _ 1 n n o i

= ﬁ Z : 0ij,k<>\i — H 1/\2))\; + ﬁ Z : Uij,k)\iH 1()\]' — H 1 )‘j)/ =a++ b
=1 j=1 =1 j=1

Then, we can show that ¢ — 0 and b — 0 since a and b are of order O,(T' 1/2) +0 ((K,T ).

Since H % Hy, we can complete the proof. m

The proof of Proposition 2.1 is straightforward by applying Theorem 2.2.

C Bootstrap procedure

In Algorithm [1] we present a description of our bootstrap procedure using AR-sieve + CSD
bootstrap. In step 1, we resample the residuals of the factor model by AR sieve + CSD
bootstrap. This is identical to the bootstrap method we present in the main text (Algorithm
1 in the main text). In step 2, we resample the regression residuals and obtain the bootstrap
sample for the MIDAS regression model. In step 3, using the two-step estimation procedure,

we can obtain the bootstrap estimators.

15
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Algorithm 1 Bootstrap for the factor-MIDAS regression model

1. Generate bootstrap factor model. For t, = 1,..., Ty, let
X5, =Nf, +e, and X; =Af, +e,
where e, is obtained as follows. For each i = 1,..., N, select an order p; = p;(Tw)

with p; < Ty (e.g., by AIC) and fit a p;-th order autoregressive model to €1, .. ., & 1y,
where €;;, = X;1, — A f1, -

Denote ¢;(p;) = (qgiyj(pi), j = 1,...,p;) as the Yule-Walker autoregressive parameter
estimators, such that ¢;(p;) = T'(pi) ', with 7y, = (Fe(1),7e(2), ..., e(p:)) and

L(pi) = (Ye(r — 8))r,s=1,2....p; Such that

Ty—|7|
- 1 - s _
Ye(T) = E Z (City, — ei)<€i,th+|7| — &),

tp=1

fort=0,...,p;and & = Ty ZZ;Hzl €;1,. With chosen lag length p; = p;(Ty), generate

pi
* 7 * * .
Cit, = E ¢i7j<pi)ei7th—j + Us 15 ty = 17 s 7THa

i=1
v (% . v wl/2 . .. .. ..
where uf = (uj, ..., U\, ) = S 1y, with n, ~1i.d.(0, Ix). Set initial conditions
* * _ y
€y r€i1p =0fore=1... N.

Choose Y, = (Guij)ij=1,..~ by thresholding, with

. S Ty
G o= ) Owii ") yhere & B E Ui g, Uyt
u,ty ~ ~ . . u,t] T L,th 2 ]th Y
Guij 1 (|Ouis| > w) i # 7, Ty =,

w is a threshold, and @;;, = €4, — 2?:1 gzzi,j(pi)éi,th_j fori =1,...,N and ¢, =
1—}-pi,...,TH.

2. Generate bootstrap factor-MIDAS regression model. For ¢t = 1,...,T, con-
struct ~ o
yr = Bo + BLE(0) + <,
where €} = 1éy, & =y — By — Biﬁt(é), and v; ~ 1.i.d.(0,1) across t, independent of
My, -

3. Extract bootstrap factors and estimate bootstrap parameters. Obtain the

estimated factors ﬁ*h by principal component analysis on the bootstrap panel X .

!/

After, regress y; on 1 and temporally aggregated factors ( f;il e ft*i K/m) and

obtain the bootstrap estimates 5* and 6*.

16



D Proof of results in Section 3

In this section, we first deliver the bootstrap high-level conditions under which our boot-
strap data generating process yields a consistent bootstrap distribution. Our bootstrap
data generating process (DGP) is similar to the one proposed by GP (2014). Let {ef =
(€14, -» €Ny, )} be a bootstrap sample from {é&;, = (€1,,...,€ny,)'}, where &, = X;, —
A fth are the residuals from the original panel dataset. {ef} are the resampled bootstrap
residuals from {&, = 3, — g(F}; &)}. Using these two bootstrap samples, {er, } and {&}}, the

bootstrap data generating process (DGP) is as follows.

Xy, = Afy, +ef, fort, =1,..., Ty,

yr = Bo+ BLE(0) +¢, fort=1,...,T.

We can obtain the bootstrap estimators by following a two-step process that is similar to the
procedure used in the original sample: in the first step, we estimate the factors from a new
bootstrap panel dataset X; and denote them by ft*h? then in the second step, by regressing
y; on 1 and Ft*(é), we can obtain the bootstrap estimators. We denote these estimators by
a*, which are the analogues of NLS estimators from the original sample. Below conditions

are our bootstrap high-level conditions. The conditions are similar to those of GP (2014).

Condition C.1* (Weak Time Series and Cross Section Dependence in €}, )
(a) E*(ej, ) =0 for all (i,t3).

T, T, N
(b) ﬁ Ztthl sf:l |7:hth|2 = Op(1)> where V:hth = k¥ (% Zi:l ef,thef,sh)
1 Ty Ty E* 1 N * * — E*(e* * 2 =0.(1
(c) T2 Zth:1 Zshzl \/ﬁZizl(ei,thei,sh (ei,thei,sh)) = Oy(1).

Condition C.2* (Weak Dependence Among f,,, A, and €;4,)

17



(a) Ty Zth 1 sh 1 fShfth’YShth = Op(l)'

(5) 7 o B

N r * * * * * 2
T S SN Falei et — B (eei,))|| = 0pD).

(c) £ WZth 125\; fth)‘; fth = 0p(1).
- 2
(d) ﬁ ZZ;H BT \/Lﬁ 21111 Aie?,th = Op(l)-

LA

(e) 7 To th 1 (A\/%h) (%) —T' = 0,-(1), in probability, where T = Ti Z;LH=1 Var* <\/—1N1~\’efgh> >

0.
Condition C.3* (Serial Dependence among f,,, A;, and € )

(a) 7 Ty ZtH L

= O,(1) for all k.

2
.
7 S0 S Fonlel i — B (L))

(b) E*

L2
\/ITZth 1fth€:;h—kAH = O,(1) for all k.

Ae e*/7 A ~ ) . . e
(c) TH Zth 1 ( th) ( t;\L/ﬁk )_Fk = 0y« (1), in probability, where 'y, = ﬁ th , Cov'* ( i

0.

Condition C.4* (Weak Dependence Between e;, and €y)

2

(a) + Zt B F Zs 1 Dim1 55(6i,t7j/mei,sfj/m - B (ei,tfj/mei,sfj/m)) = Op(1) forj =

0,...,m—1.
- 2
(b) E* \/%—NZtT:l Zf\;l Aiei i ymet|| = Op(1), where E(ej, ;,,) = 0 for all (i,t) and

7=0,...,m—1.
Condition C.5* (Bootstrap CLT)

(a) E*(e}) = 0 and 7 Y20, B* o] = O,(1).
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2

(b) Q_l/Q\/LT S Gauel LN N(0, I +p), in probability, where E* = 0,(1)

T ~ *
\/LT > i1 Jafl
and Jor = dg(Fy, ) /0, and Q = Var* (JLT Zthl §a7t€;{> > 0.

Condition C.6* (Bootstrap Consistency)
(a) plimQ = O QPy, where Q=Varr <% Zthl ga,tsj) and Jo 1 = dg(Fy, a)/dar.

(b) plim = Ho'H|, and plim fj_l = Hol';_ Hj.

Conditions through are the bootstrap analogues of Assumptions to
in Appendix [A| Conditions are similar to the bootstrap high level conditions in

GP (2014). The mean of bootstrap residuals are required to be zeros for all (i,t;), which
implies that we need to recenter the residuals when we resample them. Condition is a
new set of high-level conditions required in our context. Unlike in GP (2014), since our bias

contains the term which relies on serial dependence in the idiosyncratic error term in the

factor model, we impose weak serial dependence among fth, \; and e;,, in Condition C.3*

Note that since fth and )\; are fixed in the bootstrap world, serial dependence in the factors
can be implied by restricting the serial dependence of ¢;;,. Condition is similar to
Condition C* in GP (2014), and we restrict the dependence between two bootstrap residuals.
Condition implies that we can apply a central limit theorem on the score vector, g, €} .
In Condition we provide conditions for consistency of the bootstrap distribution. In
Condition (a), (2 denotes the bootstrap variance of the score vector in the bootstrap
world and it is a bootstrap analogue of 2. It implies that the bootstrap variance is rotated

/
with a block diagonal matrix, ®y. This is because the score vector g, = (Ft/ (0)H', ' agg{e))

is a rotated version of g, ¢, where the rotation is given by ®,. Similarly, I and fj,l, defined in

|Condition C.2* and [Condition C.3* are the bootstrap analogues of I and I';_,, respectively.
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Condition (a) and (b) imply that it is crucial how we mimic the error terms of the
MIDAS regression and the idiosyncratic factor error terms in the bootstrap world. Moreover,
in our context, since the bias depends on both serial and cross-sectional dependence of e, ,
the idiosyncratic error term in the bootstrap world should mimic the dependence in the time

series and cross-sectional dimension.

Remark 1 Note that &* is obtained by regressing y; on 1 and a temporally aggregated version
of the lags of the bootstrap estimated factors, Ft*(é). The bootstrap estimated factors, ﬂ*h,
consistently estimate the rotated version of true “latent” bootstrap factors, H*fth, where
H* = V*_I%AITA and V* is the r x r diagonal matriz containing on the main diagonal

the r largest eigenvalues of X*X* /NTy, in decreasing order. This matriz is the bootstrap

analogue of the rotation matrix in the original sample, H = \7*1%/\&[‘. As discussed in GP
H

(2014), the indeterminacy of the rotation matriz is not a problem in the bootstrap world,
as H* does not depend on the population values. Moreover, H* is asymptotically equal to
Hj = diag(+£1), where the sign is determined by the sign of [ f/Ty. This implies that the

bootstrap factors are identified up to a change of sign.

Remark 2 Similar to the discussion in GP (2014) regarding the rotation of the bootstrap
estimators, our NLS estimators of bootstrap DGP rotate due to the rotation in the factors

in the bootstrap world. Note that we can rewrite y; as follows.
yi = Bo+ BLH TV (0) + BLH TN (HEF(0) — F7(0)) + &7 = g(Fy,a) + &,

where g(FF, &) = By + BLH*'F*(0) and & = [LH* Y (H*F,(0) — Ef(0)) + eF. Thus, &*
estimates (P*)"*a, where ®* = diag(1, H*, I,,) is a block diagonal matriz. (®*)~'a are the

rotated version of NLS estimators in the original sample. As H* is asymptotically equal
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to Hy, (P*) ' is equal to (®f) &, where ®f = diag(1l, Hi, I,), and (PF)~'a is the sign-

adjusted version of a.

Lemma D.1 Let the Assumptions|A.1{A.5|in |Appendiz A|hold and consider any residual-

based bootstrap scheme for which Conditions are verified. Suppose T /N —
¢, 0 <c<oo. In addition, let the two following conditions hold: (1) C’ond@'tion(a) is

verified and (2) ¢ =0 or Conditz’on(b) is verified; then as N, T — oo,

VT(& — (@) 1a) T N(—e(@)) A, (95) 'S0 (D)),

in probability and A, and ¥, are defined in Theorem 2.1.

Remark 3 In|Lemma D.I} we derive the bootstrap distribution of the estimators, a*. Ac-
cording to|Lemma D.1| the distribution of vT(&* — (®5) &) follows a normal distribution

with a non-zero mean vector, —c(®5)"'A,. The asymptotic bias is proportional to (Hg)™'[.

However, the weighting parameters 6* are not affected by the rotation problem.

Remark 4 To match the bootstrap distribution with the limiting distribution of the estima-
tors in the original sample to achieve bootstrap consistency since our rotation matrix H* may
not be an identity matriz. Therefore, we consider the rotated version of our bootstrap results,
gien by \/T(CI)*&* — @&). For the consistency of the rotated bootstrap results, we rely on the
Corollary 3.1. in GP (2014) such that sup,cgr+» |P*(VT(®56* — &) < ) — P(VT(a —a) <
z)| & 0. For detail, see GP (2014). This corollary justifies the use of a residual-based

bootstrap method in the context of the factor-MIDAS regression models.

Notation: P* denotes the bootstrap probability measure, conditional on the original

sample. The bootstrap measure P* depends on the original sample size N, T" and Ty, and
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sample realization w, but for a simpler notation, we omit these and write P* for Py ,.
We write Tx = 0p+(1), in probability, or T 5 0, in probability, for any bootstrap test
statistics T, if, when for any 6 > 0, P*(|T%r| > 6) = op(1). If for all 6 > 0, there
exists My < oo such that limy 1o P[P*(|TNy| > Ms) > 6] = 0, we write as Ty =
O,+(1), in probability. We write T3 L D, in probability, if 7%, weakly converges to the
distribution D under P*, conditional on a sample with probability that converges to one, i.e.

E*(f(T%p)) & E(f(D)) for all bounded and uniformly continuous function f.

Lemma D.2 1 Z;‘le 5I(ﬂ*_j/m — H*ft_j/m) = 0p+(1).

Lemma D.3 If VT /N — ¢, where 0 < ¢ < oo,
(@) G5 i (B = H g pu) (P = H figpm) = VT H T H V! 0,0 (1),
(0) G s By = H Fimgpi) F oty = H iy = VT H T HV T 4 0,0(1),
(c) \/LT Zthl H*ﬁ—j/m<-ﬁ*—j/m - H*ft—j/m)/ - \/TTH*F* (ﬁ Zsszl fShf:Q ViR op+ (1),

(d) \/LT ZZ:I H*.ﬁf—l/m(.ﬁ*—]/m_H*ﬁ—]/m)/ = \/TTH* <% ZZ;l .ﬁf—l/m,ﬁ_]/m) F* (ﬁ ZZ;LHZI fshf:;> ‘7*_2+

0p+(1).

Lemma D.4 If \/T/N — ¢, where 0 < ¢ < 00,

(a) == >0y (F(0) = H*Fy(0))(F7 () — H*F(0))'
= cHyV ! (Zﬁil w; ()T w; (6) + Y5, wj(é)l“;f_lwl(é)> VUHS + 0,0(1),
(b) o= >y H'E(0)(Fy(0) — H*F(0))

— ol |05 wk(8) + 300 S0 ws 0) (3 S0 Feim i jym) w0)] TV Hiope (1),
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Proof of Since in the bootstrap world, &* maximizes the following

objective function:

T
Nk [~ 1 [x  ~
Qr(@) = =5 >l —g(F, )P
=1
where g(F¥, &) = §/H*'F*(0). Then, we have
-1

VT(& — (%) 'd) = —

T T
1 - 1 -
T E H(Ft*vaT) Y= E S<Ft*7d/)7
r t=1 T t=1

where s(F}, &) is a score vector and H(F}, &) is a Hessian matrix in the bootstrap world.

ar is intermediate between & and a*. We analyse each term. We can write the score vector

as follows.
T ~ -
1 — 1 e e i e 997 @)
—=> s(F,a) = —=> e + fH T (HF(0) - F7(0)|—3—,
vT t=1 T = 04
where the partial derivative is
0
ag(ﬁ*7&> *ag(p7a) * * ~ ~ ~
=0 a; + P, where P} = Er(0) — H*E,(0) :
OFF(0) rr—1'7 _ OF(0) r7—1/
_( B H 15_ B(Q)Hlﬁ)_

and ®* = diag(1, H*, I,). Under this decomposition, we can analyse \/LT ST et ag(gg,d) into
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two non-zero blocks of P. The second block can be written as follows.

= S 0) — HOR(O)
S DO~ ) + s 0) OV

. ~ p . . . . . . . .
Since # — 6 and weighting function is continuous function, we can use continuous mapping

theorem and have the second part as o,(1). By we can show that the first part

is 0,+(1). The third part can be argued similarly. Since it is easier to check for each row, we
OF} (61
80y,

write k-th row of the third block in P} as ( H;_llék — MHk_yﬁk). Then, for this

00y,

k-th row, we can write it as follows.
1 ) v s OF(0k)
c* L H* 1 _ > H 1
T K ~
1 * ow j, (8 ) ¥ *
= th Z e (fk,tfj/m — Hj fri—j/m)
t=1 i=1 90y,
= ‘]7
T K ~
+_ * j7~ _ ) —iim
T Z ct Z { 00, o0, fk,t i/

T K
~ 17 1 « 8'[1}‘7 (9 ) ~
=+ (ﬁk — Hk 1 /Bk)_ th [jl ) Jagk k -fk:,t—j/m]

where Hj, is the k-th diagonal element in the rotation matrix H and Sy is the k-th slope

parameter in 5. We can obtain the second equality because 8L HVA and [Lemma D.2
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Finally, we have the following result.

T &~

1 L0g(Fya) g « O

T2 Yo R L o, a0y, )
t=1

where ®f = plim ®*, Q = Var* <\/LT Ethl 5;‘§a7t>, and §o, = dg(Fy, a)/0a.
Now, we analyse the second term in the score vector \/LT 23:1 B'H*(H*F,()—F}(0)) %
with respect to B and 5, respectively. (Note that there is no bias with respect to Bo, therefore

we focus on 51 here.) By |Lemma D.4| the score vector with respect to Bl can be written as

follows.
1 I
= D F) = F (O)Fy 0V H 5
VT t=1
T ~
=~ |77 S~ RO )~ 1 +—ZH*Ft —HR@)| B,
—cH; |V! { w;(0)Tw; (0) + Zzwj(é)fj—zwz(é)} e
i=1 =1 i)
K ~ K K 3 1 T . ) i N i
- {wa(e) + Z ijw) (T ZFt—j/mFtll/m> wl(ﬁ)} I'v=2| 5
J=1 J=1 I#j t=1
= —cH{ Bg, + 0p-(1)
in probability, where we define Bp, as follows.
~ K ~ _
B = |7 S @0+ 33} 7
J=1 J=1 1#j
K ~ K K B T i B )
+{Zw§(9) +Zzwﬁ'(9) ( Z t—j/mFi_ 1/m> wl(&)}ﬂ/—z By
J=1 =1 I#j t=1
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We can also rewrite the part with respect to 6 by as follows.

T2 g BAH @)~ F )

K ~ K K
~ ~ ow;(0) -~ ow;(0) ~ | -
=—chro VTN s )ij(Q)—i—ZZ w; () iy (0) p VT
—  J0 — 0
J= J=1 I#j
o) - D (@) (1 o]
{Z 1O 0+ 30y 2l (—Z i ;l/m> wzw)}rw B
00 T
j=1 j=1 1#j t=1
= —CB@ + Op (1)
in probability, where we define By as follows
K ~ K K ~
> ow;(0)~ =~ Ow;(0) ~ | -
o |7y 25y, gy oS 2B L
— 00 — 00
J= J=1 1#)
K ~ K K ~ T
ow; (6 ~ ow;(0) [ 1 - O R -
+3 s )w](9)+zz w; (0) S By | wi(8) p TV 2| G
— 0 — = 00 -
Jj= J=1 1#j t=1
Next, we derive the hessian matrix. We first rewrite it as follows.
LS = U LS WO
T~ " daod — 8oz o ! >

Then, H; is 0,-(1) by |Condition C.5*t(b) and the results in the proof for The

second term H, converges in probability to ®3%®; as following:

T ~ ~ ~
&) dg( Ft L) o TO9(F ) 0g(Fr ) o h o veas
Z 804 15a% - (I)OE[ o oo’ }CDO = P20y, (6)

where E[@g(;:; ) %] = 3. We can obtain this by rewriting M = ¢pr=-1— ag( 2) 4 Pr.

Then, 1 L %@Pf = 0p+(1) and 7 S PrPY = 0,(1), in probability. By putting all

together, we have

VT(& — (95)7'a) L N(—c(@;Sdr) ' df By, @5 S1O8 1 dp ), (7)
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in probability, where B, = (0, Bﬁu By)'. Under Assumptions , we have plimV =V,
plim & = &', plim ®* = &, and plim Q = ®,QP,. This implies that /T (&* — (F)~'@) <z,

N(—c®; 1AL, @518, ®57 1), in probability. m

The proof of is similar to the proof of Lemma B.2 in GP (2014) and

Lemma D.3|- (a) and (c) are similar to the proof of Lemma B.3 - (a) and (b) in GP (2014),

respectively. Thus, we focus here to prove (b) and (d), which are new.

Proof of [Lemma D.3l Part(b): Using the identity in GP (2014), we can rewrite the

part (b) as follows.

1

T
fz(ft —j/m H* ft J/m)(ft Im — H*ft—l/m)/

t=1

T
-1 .
=V 1? Z( Lt—j/m +A2t —j/m + A3t —j/m +A4t ]/m)
t=1
X ( Vietym t As e m T Ay + AZ,t—l/m)'V*_l.

Ignoring V*1 = O, (1), we can show that the terms except % Zthl A;,tfj/mAg 1—1/m are negli-

gible. For example, we have %Zthl A’{’t_j/mA{t 1ym = Op~ (T™Y), 7 ST LA t—j/mAZt Um =
Op*(N_lszf%F ), and 7 Zt 1 4t j/mAZt Um — Op*(N_l(;K/’ZT ). The cross terms are: T Zt 1 1t j/mA;t 1/

A*

3,t—l/m

A*

Op+ (TTYANTY2531 ), TZt 1 = Op (T7'2N12), TZt 1 dt—l/m =

1t j/m

OP (T 1/2N 1/2)’ TZt 1 2t j/mA?;t I/m — Op*(N_l(S;]%“ ) A;t ]/mAzklt l/m = OP*<N_15]?/5“H)7

and 4507, Aj, ]/mAZt Um = = O+ (N710y7, ). Since we can show that

T = *! A

1 1 Net i CHIYAN
As = —H ] H* + 0, (1),
23153/ 3tl/ N T;( m)(\/ﬁ P()

1t —j/m

we have

T

1 s * £x % r \/T~*— * T *Y rk—

= e iym = H iy (F iy = H frpm) = ~V YT, H V! 4 0,(1),
t=1

3
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e* A
where we define I';_, = IS < = ”m) < Vi ) Part (d): Similar to the identity we

used in part (b), we can rewrite part (d) as follows.

T
Z ft —j/m ft l/m H*ft—l/m)/

1 * f * * * 7k —
= ﬁ Z H ft—j/m( 1,t—l/m + A2t l/m + A3,t7l/m + A4,t7l/m)lv '
t=1
= VTH (d}y + djy + djs + dfy) 'V,

where d}; = %ZL ft—j/mA;(,,t—l/m fori =1,2,3,4. Then, we can obtain d}, = O+ (5&17,HT_1/2)+

Op-(Ty"), djy = Ope((TN)~1/?) by |Condition C.3*}(a) and dj; = O ((TN)~'/?) by |Con-
dition C.34(b). Finally, dy, = & (500 froymBy 5 ) T (7 S04 FF7 ) V7t + 0,0 (1),

Thus,

T
ZH ft —j/m ft l/m H*ft—l/m)/

\/_ ( Z l/mft ]/m> I (TLZHJE ~:> /e 2+0p (1).
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Proof of[Lemma D.4| Part (a): We rewrite part (a

) and apply [Lemma D.3]
1 < § 3 '
VT Z Z ft —j/m H*ft*j/m ] [Z w] ft —j/m — H*ftj/m)]
t=1
K . 1 T 3 ~ ~ ~
=> w;(0) 77 S (i im = H femipm) FE o — H*ft_j/mV] w;(6)
j=1 t=1
K K ~ 1 T ~ _ _ ~ R
+) 0> w;(6) Nk S i = H Frjim) Fiym — H*ft_Z/my] wi(0)
J=1 U t=1

K
=V H (Z w; (0™ w; (0) + Zw] % wi( > H V! 4 0,.(1)
j=1

= cHV (Z w; (0 )+ ij L% wn( ) )| VTIHG 4 0,4 (1).

We use Lemma B.1 in GP (2014) to obtain the final equality, V* = H*VH* 4+ O (Onr,)
V + 0, (0y%,,) and H* = H; + O, (6x7,,) in probability.

Part (b):
LTZ Zwy(Q)(ft* iym — H* f ]/m)] [ZMJ(H)H ftj/m]
= ij( f

K K
15 SUTURI S T S
23O R o B = H i

K R K K R 1 T 3 ] 1 Tn N\
= el | 3 wi(0) + DY wi(0) (; 2 ft—z/mft’j/m> wi(@) | T (E > T ) V2t 0, (1)
L i—1 i—1 175 _ | s=1
'JK B ]K KJ B . ] ~
cHy | wi(@) + ) > w;(6) ( Z ymlfi W) wi(0) | TV 72H + 0,4 (1),
Lj=1 J=1 I .

in probability. The final equality is by applying Lemma B.1. in GP (2014) and by ik -t
VIH* and H*V* ' =V~'H*. =
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In the remaining part, we prove Theorem 3.1. Recall that

pi
e =Y Gij(pi)ey, ;+ui, forty =1, Ty, (8)
j=1
where &Z(pl) = (éu (pi),j = 1,...,p;) is Yule-Walker autoregressive parameter estimators.

By the fact that él(pl) is Yule-Walker estimator, we can represent as moving average

process of order oo as
o
§=0

with izz‘,o(pi) = 1. By stacking and @ over i = 1,..., N, we can rewrite it as vector

representation as follows.

pi

e:h = Z QDj(p)e;‘h_j + uy, and (10)
j=1

e, => Vilpui, (11)
=0

with Wo(p) = Iy and p = max(py, ..., pn). Note that ®;(p) is N x N high-dimensional ma-
trix, but it is a diagonal matrix by the construction such that Q:)j (p) = diag(qgl,j (p1),---, (;SN,]- (pn))-

To prove Theorem 3.1, we include an auxiliary Lemma below.

Lemma D.5
(a) 3272 1W;(p)—W,|| = 0,(1), where ¥ is MA coefficients for e, such that e, = > im0 Wit
(b) S50 [higl® = 0p(1) fori=1,...,N.

Proof of Lemma To prove Lemma(a), we use the arguments in|Bi, Shang,
Yang, and Zhu|(2021), specifically, Lemma C.7 in their supplement appendix. The difference

is that their bootstrap method is applied to the factors, whereas our bootstrap method is
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constructed using the idiosyncratic error terms. Using their arguments in the proof of their

Lemma C.7 and the fact that €,;, —e;; = ¢, — ¢y = Op((SJT,lTH), we can obtain the same result

as in Lemma |D.5{ which yields 3 7, 19;(p) — || = 0,(1). For (b), we can use Lemma|D.5

and Assumption 3 in the main text to conclude. m

Proof of Theorem 3.1. Following Lemma Remark 3 and 4, it is sufficient
to show that our bootstrap algorithm described in Section 3 satisfy the bootstrap high
level conditions Condition C.1*. Part (a): We can show that E*(ej, ) =
> izo i (pi) E*(uj,, ;) = 0 since E*(uj, ;) = 0 by its construction such that u}, = i}/znth

with n;, ~ 1.1.d.(0,Iy). Part (b): We first write 77, as follows.

1
Y= E (Ner’ez)

* [ 1 - T
L J1=0 j2=0
. 1 (o) oo B
=F Nﬂ’ ( Z \IJ] (p)ut —j1 Us— ]2@, )
L Jj1=0j2=0
e o /
=1tr N \Ifj(p)Eu‘I’s—Hj(p) ) <12)
=0

where we obtain the last equality since E*(u;_jul ;) = 0if t — j; # s — j,. Using (1 , we

can write our condition as following;:

%2 T ST /
T_H Z vael” = T_H Z tr (N Z‘I’j@)zu‘l’s—m (p)>
s,t=1 s,t=1 7=0
~ Ty 0o 2

2] (11 i .
< —— U, yii(p)V

<(BE) (37, 2 [ veworoo

1 2 2

We can show that ||£,[|>/N = O,(1) since we can show the similar arguments in GP (2020)
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such that ||2,]| < p(24)y/rank(Z,) < p(3,)v/N under Assumption 4-5 in the main text. We

- 2 - 2
can also show that %ﬁ ZST;I:l =0 H\Ils_tﬂ (p)H ”\I/J (p)H = O,(1) under the summability

condition. Part (c): First, note that we can write
2

ith 1,Sh ith 1,Sh

-
WE

=1

1 N
o * [ % * * *
- N Z COU (67'7th 6i78h7 ejvth ej75h)
3,7=1
1 N 00
_ E E 7 7 . 7 * [k * * *
- N ¢ka1 ¢ka2¢]vk3¢]vk4 OOU (ui,th—kl ui,sh—k27 uj,th—k3 uj,sh—k4)'

1,j=1 k1,k2,k3,ka=0

. N . 1/2 .
We can write w;y, = ajm, = > ,_; aufi,, where a; denotes the i-th row of Zu/ . For simpler

notation, define Cov*(ej,, €, €4, €5s,) = Dijtys,- We can rewrite Ay, as follows.

00 N
Aij,thsh = E %‘,kl wi,kg wj,kg%',m E Qi 1y Qg 15 G 13 Qg 1y
k1,k2,k3,ks=0 l1,l2,l3,l4=1

*
x Cov (7711,th—k177l2,8h—k:2>77l3,th—k377l4,8h—/€4) .

7

-~

Ax

Since 74, ~ 1.i.d.(0, Iy), we can consider A based on the choice of [; for i = 1,2,3,4 and
th — k1, Sp — ko, tp, — ks and s, —ky. Weneed [y =1y =l3=14, l; =l3F#ly =14,0r |y =1y #
lo = I3 for Ax to be non-zero. If [; = Iy, = I3 = 4, weneed t, — ki1 = s, — ko = t,,— ks = sy, —ku,
th—k1 = th—ks # sp—ko = sp—ky, ort,—ky = sp—ky # $p,—ko = t;,—k3. In this case, we have
Ax = E*(nj,, ) —Lor 1. If Iy = I3 # Iy = Iy, we need t), — ky = t), — ks and s, — ky = s, — ku,
and we have Ax = 1. Similarly, when l; = Iy # [, = I3, we need t;, — k; = s, — k4 and

sp — ky = t), — k3, and this yields Ax = 1. Letting 77 > max{E*(n, ) — 1,1}, we can bound
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the condition as follows.

[e'¢) N 2
< D PimWikaCim Wi + Dind, ’f2¢j,t—s+k2¢j,s—t+k1> (Z azyl%l)

k1,ka=0 =1

00 2 N 2 00 oo N 2
<17 <Z %,k%’,k) (Z ai,laj,l> + (Z ¢¢,k?/1j,s—t+k> (Z wi,kwj,t—s—i-k) <Z ai,laj,l>
k=0 =1 k=0 k=0 =1
I =Ai—(1) =Ay—(11)

Thus, the condition is bounded by
1 Ty 1 N 1 Ty 1 N
77(ﬁZNZAz‘j—(I)ﬂLﬁZNZAij—([I))~
t,s=1 i,j=1 t,s=1 i,j=1
We can show that Zgjzl A;; — (I) = Op(1) which is sufficient to show that the first term is

O,(1). Note that we can bound it further by Cauchy-Schwarz inequality as follows.

1/2

| XN o \2/N 2 | XN o \* | XN N 4
N Z <Z %’,k%’,k) <Z ai,laj7l> < N Z (Z 1/12'71@%71«) N Z <Z aivlaj7l>
‘ k=0 I=1 ij=1 —1

1,j=1 = k=0 =1

1/2

We can show that for some positive constant M, by repetitive application of Hélder’s in-

equality,

o) 4 o o
<Z &k%k) <M <Z |1sz7;]k‘4> < MZ [Pkl |7
k=0 k=0 k=0

By Cauchy-Schwarz inequality, we can show that

- 1/2

| X RS LN 1/2 L
N > (Z %‘,k%,k) <M (N > |¢i,k|8) (ﬁ > |¢j,k|8>
i,j=1 k=0 i=1 j=1

We can show that this is O,(1) by Assumption 3 in the main text. We can also show that
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1/2

{% Zi\,jjzl(a{ia’j)él} = 0,(1), because we have

1/2
(N > (aja)) ) <AJtr(ED/N <\ {tr(E2)12/N = |Z.]l/VN = 0,(1).

3,7=1
We can obtain the final equality by Assumption 5 and by applying the arguments in GP
(2020) to %, such that [|X,]| < p(E.)4/rank(X,) < p(X,)V/N (in their proof of Theorem

3.1). For the second term involved with A;; — (I1), by applying Cauchy-Schwarz inequality,

we have
| Inog N | N (N 21/21N1TH00 2\ 2) /2
@ Z N Z Ajj — (1) < N Z (Z ai,laj,l) N Z @ Z (Z wi,kwj,stﬂg)
s,t=1 i,j=1 i,j=1 = i,j=1 s,t=1 \ k=0

5y 1/2
We can show that {% SN (le\il aiﬁlaj,l> } = O,(1) by using the similar arguments

i,7=1

above. For the remaining term, we use Cauchy-Schwarz inequality as follows.

1 N 1 T o ~ 2 2 N 1 0o
N Z T_2 Z (Z ¢i,kwj,s—t+k> Z T_2 (Z |¢z k:|2 Z |¢]S t+k| )
ij=1 H

H st=1 \ k=0 k=0 H -1

Since we can show that 350 |1 2% Zst NDisiir]? = O,(1), the order of the above

term is O,(N/T%).

Condition C.2*. Part (a): By Cauchy-Schwarz inequality, we can bound the condition

as follows.
1/2 1/2
sy < (4 0] (5 k) - o
st 1 st 1
We can show the term in the first parenthesis O,(1) since we can show that - Z Ll =

O,(1) by using Lemma C.1-(i) in GP (2014) and use Cauchy-Schwarz inequality. The term
in the second parenthesis is O,(1) by Condition (b) Part (b): For simpler notation,

in the remaining proof, we let 7,5” = 7[)” (p;) and \Ifj = W;(p). Note that we can rewrite the
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condition as follows.

I P
7o 27 2 IRAIPg X Covt(euei efacsy).
H t=1 Hs,l:l 1,j=1

By considering the combination of 7, j and ¢, s and [, the covariance term Cov*(ej €; 5, €} ,€5,)

can be further bounded as follows.

N 2
OOU*( Ztels7e]t6]l ( Z % k17vbzk21/}Jk1¢Jl S+k‘2> (Z ai,may}m)

kl k,‘2 m=1
o) N 2
+ E Vi k1 Vi ko Vit —s ko g i—t4k E Qi mGjm
k1,k2=0 m=1

= 0(Bij — (I) + Bi; — (1)),

- 2
where we denote B;; — () = <ZZT7,€2:0 Q/Ji,klwi7k2wj7k11/}j7l,s+k2) (Zﬁzl ai,majm) and B;; —
- - 2
(II) = (ZZ?,CFO %’,kl¢z‘,k2¢j,t—s+k2¢j,l_t+kl> (Zﬁzl ai,majym> . Then, using this bound on
the covariance term, the condition is bounded by the following equation.
N 1 Ty o 1 N
[ Z 17PN S0 By (D) 4y S RIS S By <H>]
H ¢ 511 i,j:1 H ¢ 511 i,j=1

The first term in the square bracket can be bounded by Cauchy-Schwarz inequality as follows.

o\ 1/2

LY n, -

1]1

N T 1/2 Tu
anfln? > By— ()<~ ! Z( anfln“) T—HZ

Htsl 1 ij=1 H -1 s,l=1

We can show that ﬁ S i I fill* = O,(1) by applying Lemma C.1 in GP (2014) with
p = 8 (this can be verified under our Assumption 1 in the main text). To show that

2
ﬁ ZZ:?:I % ij:l B;j — (I)| = O,(1), we first bound it by Cauchy-Schwarz inequality as
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follows.

Ty

Z By~

3,j=1

2 N 00 2
< <% Z(a;a] ) Z Z ( Z %,kll/jakgtzj,kl%,l—ka>

i,j=1 ,j ]. Sl 1 k1,]€2=0

Hsl 1

As in the proof of Condition C.1*-(c), we can show that - Z” (dla;)? = Opy(1). First, note
that by using Holder’s inequality, we can show that (ZZ?’,CFO @i,k1@i7k2lﬁj,klzﬁ“s+k2)2 <M
Zif,kFO mz’,kzllzi,kzl/;j,kﬂzjgz_%@]2, for some positive constant M. Then, we apply Cauchy-
Schwarz inequality and Holder’s inequality to obtain the following inequality. For some

positive constant M,

2
— Z T Z < Z 1/}2 kﬂﬁz kgw],klz/}]l s+k2)
t,j=1 H sl=1 \ki,k2=0

1/2

N oo 00 1/2 N oo 0o
(% Z Z ‘&i,k1|4 Z ‘&i,k2|4> %Z Z ‘&j,k1|4 (Z Z ’w]l S+k2‘ >
=1 k1=0

ko=0 j=1 k=0 ko—0 ~H 11

Note that 7= 30 [0 s, | = 372 (1 - ﬁ) [ inal® < 32720 [hyr k> Then, since

Z;i";:o doreo [ jriml? = Zk,‘;g o(k3+1)‘¢3 ks| % we can show that <Zk2 =0 TlH Zsl |0 srs

My Yoo (ks + 1)2|4h; 4,|* for some positive constant M;. Therefore, we can show that the

~—
IN

second term is O,(1) by Assumption 3 with » = 2. By Assumption 3, we can show that
S o Wi |t 0o Wi, |* = Oy(1) and we can also show that the remaining term in
2
N
]lv Zi,j:l By — (] = Op<1)-

By applying Cauchy-Schwarz inequality repetitively, it is sufficient to show that

the above inequality is O,(1). Next, we show that ﬁ ZsTf:l

N Ty 2

TH o
1 1 1 S .
N Z T Z T ( > ¢i,k1¢i,k2¢j,t—s+k2¢j,l—t+k1)
1,]= = t=1 ki1,ko=
L1 X I o 21/21N1TH00 2\ 1/2
. 2 . 2
<Mz | 3 20 |77 20 2 Wisdiavnal N 2 |7 2o 2 i
ij=1 t,l=1 k=0 t,5=1 t,5=1ko=0
— 0,(1).
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In fact, we can use Cauchy-Schwarz inequality and Assumption 3 to show that the term is

O,(1). For example, we can show that

2

% ZN: Ti ZH: i wi,k&j,lﬂ%k‘z =N ZN: i Wuﬁ Z |1/131 t+k!
R A v
< ( Z |%Ezk:|8) <M2%22|(1+k>4|@zm|8>
i=1 k=0 7j=1 k=0
= Oy(

for some positive constants M; and M. We obtain the final equality by Assumption 3 with

r = 4. Part (c): First, note that we can write the condition as follows.

2 T L
1 <& - e’A Ne*
_ t / E* s t
T Z r(fifs) (m m)

Since E* (%ﬁ%) = E* [tr (1\\/3 e\ﬁA) , we focus on E*(efel). Under vector MA(c0)

Ty N

\/T}J—NZth)\; ;kt

t=1 i=1

E*

representation of e;, we can write it as follows.

%)
* */ o E /‘ E ST
et s ‘Ijkl ut kl s— k2 \Iij E \Ijs t+k

k1,k2=0 k=0

By plugging this back into the condition and using Cauchy-Schwarz inequality,

TH N TH e [e’e) T LT e
1 ; | (AT S A
E* )\/ * _ t It k=0 u* s—t+k
\/7—}{—]\]—;;.]% iCit TH t; r(ftfs) T( N
1 Ty 1/2 ] Ty ) 1/2
< | = tr(f. )P — tr(D,_ :
< (g, X wr) (g, 35 fmef )

where we denote T'y_; = i <Zk ° U0 t+k> A. We can show that the first term is
O,(1) by Assumption 1 and using the results in Lemma C.1 in GP (2014). For the second

term, it is sufficient to show that ¢r(I'y) = O,(1). This is implied by Condition C.6*-(b),
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which will be verified. Part (d): We can rewrite the condition as follows.

TH e 2 TH e e TH e
1 Ne; 1 Nejef'A 1 NE*(eter)A
_ E* L29 | p——— E* it 2t e - | /At 0
Ty ZH Ty ZH " ( N ) Ty Ztl " N

As we have shown previously in the proof of Condition C.2*-(c), we can write E*(eje;’) =

S0 o Uk, W, Therefore, the condition is - ZTH tr (Alzzo:(’f;’“i“%[i), and this is Op(1)
given that tr(Ty) = O,(1). Part (e): To verify this condition, we use r = 1 (recall that r is

the number of factors) for a simpler notation. Therefore, it suffices to show that Var*(A*) =

0p(1), where A* = - Z (A,et> (i%) Note that

N
% % 1 1 N Y k([ k% * sk
Var*(A*) = T—% Z e Z AidjARNCov™ (e €54, €1 g€y o)

=1
| e N
< QﬁT_fI Z N2 2 A Z Di.0 Uiy V=t O s—t-2

p1,p2=0

X( E ai,mlaj,mzal,mlak,mg)

1 s s Sl N 2
{<Nu=1 Ai)V) (Z;) wi,p1¢l,s—t+p1> (T;I ai,mlal,m)}

Ty
t,s=1
t,s=1

where we obtain the second inequality by taking account of the covariance term given the
combination of 4,7, k, and [ and ¢ and s, similar to the proof of Condition C.1*-(c). Note
that given that tr(Is_;) = O,(1), we can show that = ts #_ T?, = O,(1). Therefore,
Var*(A*) = O,(1/Ty) = 0,(1). The proof to verify Condition C.3* is very similar to the
proof of Condition C.2*. For example, Condition C.3*-(b) and (c) can be verified given that
tr(T,) = O,(1) with 7 # 0.

Condition C.4* Part (a): Given that ¢} and e ;,, are independent in Assumption 2,
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it is sufficient to show that

T T N

1 1
TZNTZZCOU zt j/m iys—j/m» € zt —j/m® zl j/m):O(l)
s,l=1i=1
We show a similar term is O,(1) in Condition C.2*-(b). Part (b): Similarly, given the
2
Ae*
independence of €} and e, ;. it suffices to show that £~ \F ST \t/ﬁ”’" = 0,(1),

which is verified in Condition C.2*-(c). Condition C.5* and Condition C.6*-(a) can
be verified using the arguments in GP (2014), since ¢ is constructed in the same way.

Condition C.6*- Part (b): Note that I'; can be rewritten as follows.

T

5 1 lims o os, o« NYgA
sz—;N ; P A = N’“,

A'S, kA

~—. Then, by adding and subtracting

where we let ie,k = Z;O:o @piu@;_k. Let [, =

appropriately, we have the following:

Ty — HoUwHY = Ty, — HolDyH) 4 HolyHY — Hol'w H,

= (D — Holy Hy) + Ho(Ty — Ty ) Hy.

~
EDl EDQ

We can show that D; and Dj are 0,(1). In order to show that Dy = 0,(1), it is sufficient to
show that ie,k — Y — 0, where X, ), = Z;io U, 2,0, with ¥, = E(usu;). Note that we

can expand ie,k — Y as follows.

2e,k - Ee,k - Z(\i/p i \i} kTt Z ‘I/ \i]p_k + Z \I/pzu(ﬁlp_k - \I/p_k) .
p=0 —
Doy Di» Das

We can show that Dyy = 0,(1) since p(X, — %) 2 0 under Assumptions 4-5 using the

arguments in GP (2020). We can show that Dy; and Dsg are of order 0,(1) by Lemma[D.5]
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Next, we show that D; is 0,(1). We can decompose D; further as follows.

1 < . 1 . 1 - -
D, = N(A —AH NS (A= AH ) + NH‘”A’ZM(A —AH Y+ N(A — AH Y AH.

N J/ N J/ N J/
~~ ~ ~

D11 D12 D/12

D1y = 0,(1) by applying Cauchy-Schwarz inequality as follows.

= 0p(1),

1Dyl < \H%N(A AHY)

SO0,
p=0

=0p(1)

- J

—op(1)

where we use the fact that

S8 <

p=0

|5

PR AN <S8 o) = 000),
p=0 p=0
and use the arguments in GP (2020). Since we have

(Jws-rl)

we can show that this is 0,(1) using similar arguments as we did for Dy;. =

1Dsell < 1E ) |[ A7V [Se

E Additional simulation results

E.1 Simulation: results of DGP 1 and 2 of the factor-MIDAS

regression model

presents the results of DGP 1 and 2 in each panel. The results indicate that there
is no bias when using the true factor, however, a bias does exist when using the estimated
factor as a regressor. Increasing the sample size in both cross-sectional and time series
dimensions results in a decrease in bias. If the cross-sectional dimension is small (50 and

100), the plug-in bias tends to overestimate the bias size. Both bootstrap methods perform
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similarly and replicate bias size well. When no method is used to correct the bias, size
distortion occurs in terms of coverage rates. The plug-in bias somewhat recovers the size
distortion, but bootstrap methods outperform the plug-in bias method. The results of DGP
1 and DGP 2 are similar, and both bootstrap methods are valid for these scenarios since the

idiosyncratic error terms are randomly generated from a standard normal distribution.

E.2 Simulation experiment: increase in autoregressive coefficient

Table 2|shows the bias and 95% coverage rate of 8 when the idiosyncratic error term follows

simple AR (1) process as:
City, = PiCit,—1 + Vig, for ty =1,... Ty

where v;4, is 1.i.d. randomly generated from N(0,1). We let p; indicate the auto-regressive
coefficient, which implies the persistence of auto-regressive process. For simplicity, we impose
that each variable shares same autoregressive coefficient, p; = p. In[Table 2] we compare
the results by varying persistence. We increase the coefficient from 0 to 0.7. When the
persistence in the idiosyncratic error term is p = 0.5, the bias is around twice bigger than
the bias where there is no serial-dependence. Moreover, the size of bias increase as the

persistence increases.

E.3 Simulation experiment: unrestricted MIDAS regression model

Table 3fl5| show the performance of bootstrap methods (wild bootstrap and AR-sieve +
CSD bootstrap method) as well as plug-in bias estimation method under the framework of

unrestricted MIDAS regression model. We consider the unrestricted MIDAS regression with
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Table 1: DGP 1 & DGP 2 - Bias and coverage rate of 95% Cls for

N =50 N =100 N =200
T =50 100 200 50 100 200 50 100 200
Ty =150 300 600 | 150 300 600 | 150 300 600

bias
True Factor -0.01 -0.01 0.00 | -0.02 -0.01 0.00 | 0.00 0.00 0.00
Estimated Factor -0.32 -0.31 -0.29 | -0.20 -0.17 -0.16 | -0.12 -0.10 -0.08
Plug-in -0.38 -0.34 -0.32|-0.21 -0.19 -0.18 |-0.10 -0.10 -0.09
DGP 1. WB 025 024 -023|-0.16 -0.15 -0.14|-0.11 -0.09 -0.08
homo & AR-sieve+CSD -0.24 -0.24 -0.23 |-0.16 -0.15 -0.14 | -0.10 -0.09 -0.08
homo 95% coverage rate
Estimated Factor 84.8 82.0 739 | 89.6 90.5 883 | 91.7 927 934
Plug-in 87.6 89.1 &89.3 | 90.4 921 924 | 91.2 92.7 93.6
WB 94.1 94.7 933 | 95.0 956 945 | 92.7 954 949
AR-sieve+CSD 95.8 949 924 | 95.8 96.1 950 | 96.0 96.3 95.3
bias
True Factor -0.01 0.00 0.00 | 0.00 0.01 -0.01] 0.01 -0.01 0.00
Estimated Factor -0.34 -0.30 -0.29 | -0.19 -0.16 -0.16 | -0.10 -0.10 -0.09
Plug-in -0.37 -0.34 -0.32 |-0.20 -0.19 -0.18 |-0.10 -0.10 -0.09
DGP 9 WB 024 024 023|-0.16 -0.15 -0.14|-0.10 -0.09 -0.08
hetero & AR-sieve+CSD -0.24 -0.24 -0.23 |-0.16 -0.15 -0.14 | -0.10 -0.09 -0.08
homo 95% coverage rate
Estimated Factor 78.1 76.2 684 | 8.9 88.1 86.2 | 8.7 915 91.6
Plug-in 82.7 86.8 88.3 | 86.6 89.8 925 | 88.9 923 925
WB 91.7 93.0 93.1 | 926 93.3 942 | 91.0 944 94.0

AR-sieve+CSD 92.5 929 922 | 940 952 938 | 935 948 948

In DGP 1, both error terms are homoskedastic. In DGP 2, MIDAS regression error terms are heteroskedastic and
idiosyncratic error terms are homoskedastic. The results of coverage rates, when we use the estimated factors and plug-in
bias, are based on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile ¢ method.

a single factor as follows.

K
Y =B+ Z apfi—jz+ e
j=1

Xk = Nfi—ryz + e—pys,
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Table 2: Bias and 95% coverage rate of (3

p=0 p=0.5 p=0.6 p=0.7
bias  95% | bias  95% | bias  95% | bias = 95%
150 || -0.3380 84.7 | -0.5887 68.02 | -0.6808 60.42 | -0.7993 49.18
50 300 || -0.3100 81.76 | -0.5362 57.94 | -0.6197 48.16 | -0.7278 35.18
600 || -0.2890 74 | -0.4970 40.96 | -0.5746 29.32 | -0.6761 17.2
150 || -0.2022 89.82 | -0.3763 &83.18 | -0.4450 79.34 | -0.5372 72.62
100 300 || -0.1709 90.72 | -0.3157 81.1 | -0.3729 75.68 | -0.4502 67.1
600 || -0.1565 88.7 | -0.2849 75.36 | -0.3358 67.44 | -0.4047 56.16
150 || -0.1343 91.48 | -0.2639 87.6 | -0.3163 85.38 | -0.3890 81.8
200 300 || -0.1027 92.5 | -0.1996 89.18 | -0.2393 87.28 | -0.2943 &83.54
600 || -0.0865 92.44 | -0.1647 88.02 | -0.1968 85.48 | -0.2411  80.7

fork=0,1,2and t =1,...,T. The simulation design is identical to that in Section 4 in the
main text: fi_pm ~ iid. N(0,1) and A\; ~ iid. U[0,1]. We consider six data generating
processes as detailed in Table 1 in the main text. In this setup, y; is predicted using six
lags of the factor (K = 6). We set 8 = 0 and o, = o* with @ = 0.8. The estimation
procedure is similar to restricted MIDAS, which proceeds in two steps: we first estimate the
factors from X;_j/,, and then in the second step, we regress y; on the temporally aggregated
estimated factors up to six lags. We report the bias in «; associated with the true factor,
estimated factor, plug-in estimation method, as well as two bootstrap methods: the wild
bootstrap method and the AR-sieve + CSD bootstrap method. In addition, we provide the
95% coverage rates associated with the estimated factor, plug-in estimation method, and
both bootstrap methods. Note that the wild bootstrap is not valid in DGPs 4 to 6.

DGPs 1 to 3 yield comparable outcomes: the plug-in estimation method and the two
bootstrap methods are perform similarly, and effectively capture the size of the bias. Re-

garding the coverage rate, the bootstrap methods outperform the plug-in estimation method.
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In DGP 4, where the idiosyncratic error terms of the factor model are serially dependent,
the AR-sieve + CSD bootstrap method outperforms the plug-in estimation method in terms
of replicating the bias and correcting the distortion induced by the bias. In DGP 5, the
plug-in estimation method performs the best in estimating the bias size. In terms of cover-
age rate, the plug-in estimation method outperforms the wild bootstrap method when N is
small, while the AR-sieve + CSD bootstrap method outperforms other two methods across
all sample sizes. Finally, in DGP 6, both the plug-in and the AR-sieve + CSD bootstrap
methods replicate the bias size well, with the AR-sieve + CSD bootstrap method performing

the best at recovering the distortion in the coverage rate.
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Table 3: DGP 1 & DGP 2 - Bias and coverage rate of 95% Cls for

N =50 N =100 N = 200
T =50 100 200 50 100 200 50 100 200
Ty =150 300 600 | 150 300 600 | 150 300 600
bias
True Factor 0.00 -0.00 -0.00 | -0.00 0.00 -0.00{| 0.00 0.00 0.00
Estimated Factor -0.10 -0.10 -0.09 | -0.07 -0.05 -0.05]-0.04 -0.03 -0.03
Plug-in -0.09 -0.08 -0.08 | -0.05 -0.05 -0.04 | -0.03 -0.02 -0.02
DGP 1. WB 008 -0.08 -0.07|-0.05 -0.05 -0.04|-0.04 -0.03 -0.03
homo & AR-sieve+CSD -0.08 -0.08 -0.07 | -0.05 -0.05 -0.04 | -0.04 -0.03 -0.03
homo 95% coverage rate
Estimated Factor 86.8 81.5 71.0 | 91.6 90.6 8&88.1 | 93.3 94.1 93.6
Plug-in 89.7 89.7 90.0 | 92.1 926 925 | 93.2 94.0 944
WB 94.3 93.5 926 | 95.3 945 93.8 | 95.7 953 95.1
AR-sieve+CSD 94.4 93.1 926 | 956 944 940 | 95.6 953 95.1
bias
True Factor -0.00 -0.00 -0.00 | -0.00 0.00 -0.00{| 0.00 -0.00 0.00
Estimated Factor -0.11 -0.10 -0.09 | -0.07 -0.05 -0.05]-0.04 -0.03 -0.03
Plug-in -0.09 -0.08 -0.08 | -0.05 -0.05 -0.04 | -0.03 -0.02 -0.02
DGP 9 WB 008 -0.08 -0.07|-0.05 -0.05 -0.04|-0.03 -0.03 -0.03
hetero & AR-sieve+CSD -0.08 -0.08 -0.07 | -0.05 -0.05 -0.04 | -0.03 -0.03 -0.03
homo 95% coverage rate
Estimated Factor 78.0 74.5 654 | 86.6 87.3 86.2 | 89.2 91.6 920
Plug-in 84.3 86.8 &89.3 | 8.2 90.2 915 | 8.7 92.1 93.7
WB 90.7 91.2 91.7 | 925 927 928 | 926 939 94.6
AR-sieve+CSD 90.9 91.3 915 | 928 927 93.1 | 926 93.7 94.5

In DGP 1, both error terms are homoskedastic. In DGP 2, MIDAS regression error terms are heteroskedastic and
idiosyncratic error terms are homoskedastic. The results of coverage rates, when we use the estimated factors and plug-in
bias, are based on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile ¢ method.

F Other empirical result

In[Table 6] we present the results after excluding the COVID pandemic period. The results

are similar to Table 5 in the main text. When using the bootstrap method, the confidence
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Table 4: DGP 3 & DGP 4 - Bias and coverage rate of 95% Cls for

N =50 N =100 N =200
T =50 100 200 50 100 200 50 100 200
Ty =150 300 600 | 150 300 600 | 150 300 600

bias
True Factor -0.00 0.00 -0.00 | -0.00 0.00 0.00 | 0.00 0.00 0.00
Estimated Factor -0.11 -0.11 -0.10 | -0.07 -0.05 -0.05|-0.04 -0.03 -0.03
Plug-in -0.10 -0.09 -0.09 | -0.05 -0.05 -0.05|-0.03 -0.03 -0.03
DGP 3: WB -0.09 -0.09 -0.08 | -0.06 -0.05 -0.051-0.04 -0.03 -0.03
hetero & AR-sieve+CSD -0.09 -0.08 -0.08 | -0.06 -0.05 -0.051-0.04 -0.03 -0.03
hetero 95% coverage rate
Estimated Factor 75.9 727 614 | 8.3 87.6 844 | 89.2 91.6 91.3
Plug-in 84.6 87.6 88.5 | 87.7 90.5 91.8 | 89.3 92.2 934
WB 91.1 92.0 91.7 | 91.8 927 93.3 | 929 93.6 94.2
AR-sieve+CSD 91.1 91.7 90.6 | 91.9 926 93.1 | 92.7 939 94.1
bias
True Factor -0.00 0.00 -0.00 | -0.00 0.00 0.00 | 0.00 0.00 0.00
Estimated Factor -0.15 -0.14 -0.13 | -0.10 -0.07 -0.07 | -0.06 -0.05 -0.04
Plug-in -0.08 -0.08 -0.08 | -0.05 -0.05 -0.05|-0.03 -0.03 -0.02
DGP 4 WB 008  -0.08 -0.08-0.05 -0.05 -0.05|-0.04 -0.03 -0.03
hetero & AR-sieve+CSD -0.10 -0.10 -0.09 | -0.07 -0.07 -0.06 | -0.05 -0.04 -0.04
AR 95% coverage rate
Estimated Factor 69.6 63.1 48.7 | 81.2 83.3 789 | 87.1 89.7 89.0
Plug-in 80.1 83.1 814 | 8.0 893 89.6 | 8.1 91.2 924
WB 87.7 88.1 8.0 | 90.6 922 913 | 923 93.3 93.6

AR-sieve+CSD 89.7 90.5 883 | 920 93.0 928 | 926 939 94.2

In DGP 3, both error terms are heteroskedastic. In DGP 4, the idiosyncratic error term is generated as the autoregressive
process of lag 1 for each variable and with heteroskedastic. For coverage rates, the results for estimated factors and plug-
ins are based on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile ¢ method.

intervals associated with the factors shift. However, the bias does not have a significant
impact on the estimates for the lags of the dependent variable. Additionally, it is worth

noting that as we exclude the COVID period, the sign of the estimates associated with the
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Table 5: DGP 5 & DGP 6 - Bias and coverage rate of 95% Cls for

N =50 N =100 N =200
T =50 100 200 50 100 200 50 100 200
Ty =150 300 600 | 150 300 600 | 150 300 600

bias

True Factor -0.00 -0.00 -0.00 | -0.00 0.00 -0.00{| 0.00 -0.00 0.00
Estimated Factor -0.09 -0.09 -0.09 | -0.06 -0.05 -0.05]-0.03 -0.03 -0.02
Plug-in -0.07 -0.06 -0.06 | -0.04 -0.04 -0.04|-0.02 -0.02 -0.02
DGP 5: WB -0.03 -0.03 -0.03 | -0.02 -0.02 -0.02 | -0.01 -0.01 -0.01
hetero & AR-sieve+CSD -0.05 -0.05 -0.05|-0.03 -0.03 -0.03|-0.02 -0.02 -0.02

CSD 95% coverage rate
Estimated Factor 80.9 771 67.6 | 87.8 88.1 86.8 | 90.1 91.9 927
Plug-in 84.6 86.4 86.3 | 88.5 90.2 91.3 | 89.8 92.5 93.6
WB 89.3 87.5 82.7 | 92.1 91.7 91.0 | 929 93.7 94.2
AR-sieve+CSD 90.7 90.3 88.8 | 92.6 925 927 | 92.8 939 94.7

bias

True Factor -0.00 -0.00 -0.00 | -0.00 0.00 -0.00{| 0.00 -0.00 0.00
Estimated Factor -0.12 -0.12 -0.12 | -0.07 -0.06 -0.06 | -0.04 -0.04 -0.03
Plug-in -0.06 -0.06 -0.06 | -0.04 -0.04 -0.03|-0.02 -0.02 -0.02
DGP 6: WB -0.03 -0.03 -0.03 | -0.02 -0.02 -0.02 | -0.01 -0.01 -0.01
hetero & AR-sieve+CSD -0.06 -0.06 -0.06 | -0.04 -0.04 -0.04 | -0.03 -0.02 -0.02

CSD+AR 95% coverage rate
Estimated Factor 76.5 70.6 57.1 | 8.8 85.8 &83.0 | 8.7 90.7 90.9
Plug-in 82.3 82.3 79.2 | 8.9 894 894 | 89.2 91.8 934
WB 86.3 82.1 73.2 | 90.7 899 88.0 | 92.3 929 934

AR-sieve+CSD 89.6 879 84.8 | 92.1 922 914 | 928 93.7 945

In DGP 5 and 6, both error terms are heteroskedastic. In DGP 5, the idiosyncratic error term contains the cross-sectional

dependence. In DGP 6, we impose the dependence in both dimensions for the idiosyncratic error terms. For coverage
rates, the results for estimated factors and plug-in are based on asymptotic theory. The bootstrap coverage rates use the
bootstrap equal-tailed percentile ¢ method.

two factors is reversed. Previously, the slope coefficient for the aggregated factors was pos-
itive, whereas it becomes negative without the COVID period. This suggests that monthly

information during the COVID period has a considerable influence on nowcasting the GDP
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growth rate.

Table 6: Estimation result of long period (1984 Q1 - 2019 Q4)

h=2 h=1 h =20

0.87 0.92 0.88
Asymptotic 0.70 1.03 | 0.79 1.06 | 0.75 1.02
constant WB 0.76 1.03 | 0.84 1.09 | 0.77 1.02
AR sieve+CSD | 0.79 1.05 | 0.86 1.11 | 0.79 1.04

-1.10 -1.34 -1.27
Asymptotic | -1.48 -0.73 | -1.67 -1.01 | -1.53 -1.00
first factor WB -1.52 -0.92 | -1.78 -1.20 | -1.61 -1.12
AR sieve+CSD | -1.56 -0.98 | -1.83 -1.27 | -1.66 -1.16

0.09 -0.14 -0.01
Asymptotic -0.67 0.84 | -0.35 0.07 | -0.58 0.56

second

factor WB -0.13  0.26 |-0.40 0.03 [-0.23 0.14
AR sieve+CSD | -0.17 0.24 | -0.48 0.02 | -0.28 0.13

-0.11 -0.19 -0.17
Asymptotic | -0.24 0.03 | -0.31 -0.06 | -0.30 -0.04
Yi—1 WB -0.26  0.00 | -0.33 -0.10 | -0.31 -0.06
AR sieve4+CSD | -0.26 -0.01 | -0.35 -0.11 | -0.31 -0.06

-0.06 -0.09 -0.04
Asymptotic | -0.24 0.12 | -0.24 0.05 | -0.17 0.09
Yi—2 WB -0.24 0.08 |-0.27 0.03 |-0.17 0.08
AR sieve+CSD | -0.24 0.08 | -0.27 0.02 | -0.18 0.07

-0.16 -0.14 -0.15
Asymptotic | -0.29 -0.02 | -0.26 -0.03 | -0.26 -0.03
P3 WB -0.28 -0.04 | -0.26 -0.04 | -0.26 -0.04
AR sieve+CSD | -0.29 -0.04 | -0.27 -0.05 | -0.26 -0.04

The interval based on the asymptotic theory is obtained by adding and subtracting 1.645
times the heteroskedasticity robust standard errors. The confidence intervals based on
bootstrap methods are obtained with equal-tailed bootstrap intervals with a bootstrap
number 4999. WB indicates that we use wild bootstrap and AR sieve + CSD indicates
that we use the bootstrap algorithm described in Section 3 in the main text.
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