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Abstract

Factor-MIDAS regression models are often used to forecast a target variable using
common factors extracted from a large panel of predictors observed at higher frequen-
cies. In the paper, we derive the asymptotic distribution of the factor-MIDAS regres-
sion estimator coe!cients. We show that there exists an asymptotic bias because the
factors are estimated. However, the fact that factors and their lags are aggregated in a
MIDAS regression model implies that the asymptotic bias depends on both serial and
cross-sectional dependence in the idiosyncratic errors of the factor model. Thus, bias
correction is more complicated in this setting. Our second contribution is to propose a
bias correction method based on a plug-in version of the analytical formula we derive.
This bias correction can be used in conjunction with asymptotic normal critical val-
ues to produce asymptotically valid inference. Alternatively, we can use a bootstrap
method, which is our third contribution. We show that correcting for bias is important
in simulations and in an empirical application to forecasting quarterly U.S. real GDP
growth rates using monthly factors.
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1 Introduction

MIDAS (Mixed-Data Sampling) regressions are popular tools in forecasting. Originally pro-

posed by Ghysels et al. (2004; 2005; 2006; 2007), these models combine predictors observed

at high frequencies by relying on a parametric temporal aggregation function to forecast a

target variable sampled at a lower frequency. Originally proposed to handle financial vari-

ables, they have become standard tools in macroeconomic forecasting (see e.g., Clements

and Galvão (2008; 2009), which relies on MIDAS autoregressions for nowcasting U.S. real

output growth).

More recently, standard MIDAS regressions have been generalized to “factor-MIDAS

regressions” (or “factor-augmented MIDAS regression models”) by including as predictors

common factors extracted from a large panel of time series sampled at a higher frequency

than the target variable. By combining with the dimension reduction properties of factor

models, factor-MIDAS regressions are powerful tools for forecasting and they are often used

in empirical applications (see for instance Marcellino and Schumacher (2010), Monteforte

and Moretti (2013), Kim and Swanson (2018), and Ferrara and Marsilli (2019)). Estimation

of factor-MIDAS regressions is complicated by the fact that some of the predictors are latent

common factors. It typically proceeds in two steps: we first extract the common factors using

principal component analysis, and then estimate the model using nonlinear least squares,

where the estimated factors are aggregated by a temporal aggregation scheme.

Although factor-MIDAS regressions are empirically popular, no formal inference methods

have been proposed in the literature. Our paper proposes inference methods for factor-

MIDAS regression models and provides the theoretical justification for these methods. The

main contributions of this paper are as follows. Firstly, the asymptotic distribution of the
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factor-MIDAS regression estimators is derived. We show that there is an asymptotic bias in

the second step due to the estimation of the factors in the first step. Secondly, we propose

two inference methods accounting for this bias: a bias correction method based on the bias

formula we derive and a bootstrap method.

Our work is related to the existing literature on factor-augmented regression models

(without mixed frequencies). Bai and Ng (2006) first studied the “generated regressor”

problem in standard factor-augmented regression models. They showed that inference for

the regression coe!cients could proceed as if the estimated factors were observed if the

cross-sectional dimension N was su!ciently large relative to the time dimension T , more

precisely if
→
T/N ↑ 0. More recently, Gonçalves and Perron (2014) (henceforth, GP

(2014)) showed that an asymptotic bias may appear under more relaxed assumption (i.e. if
→
T/N ↑ c, 0 < c < ↓). We extend these results to factor-MIDAS regression models. This

is not a trivial extension for two main reasons. First, the estimation problem in a factor-

MIDAS regression model is more complicated because the predictors include latent factors

(and their lags) sampled at a di”erent frequency than a variable of interest. In addition,

the second step is based on nonlinear least squares (rather than OLS) because of a temporal

aggregation, and this complicates the asymptotic analysis. In particular, whereas the bias

derived in Gonçalves and Perron (2014) depends only on the cross-sectional dependence,

the asymptotic bias of a factor-MIDAS regression model depends on both serial and cross-

sectional dependence in the idiosyncratic errors. Consequently, di”erent methods of inference

are required for factor-MIDAS regressions.

We consider two di”erent methods of inference in this context. The first is an analytical

bias correction that can be used along with asymptotic normal critical values. Our plug-

in bias correction is robust to both serial and cross-sectional dependence of unknown form
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in the idiosyncratic errors. It is based on the asymptotic formula of the bias we derive,

replacing unknown parameters with consistent estimators. As in Ludvigson and Ng (2009),

who also propose a bias correction formula for the standard factor-augmented regression

model without mixed frequencies, we rely on the CS-HAC estimator of Bai and Ng (2006)

to account for cross-sectional dependence. However, our estimator is more complex since it

also requires robustness to serial dependence.

Our second method of inference is based on the bootstrap. The bootstrap has two signifi-

cant advantages: it can perform better in finite samples, and it avoids the explicit estimation

of the bias term which can be complicated in this context. We propose a bootstrap procedure

inspired by Gonçalves and Perron (2014), which is a residual-based bootstrap. Although the

method is inspired by Gonçalves and Perron (2014), the asymptotic justification is substan-

tially more complicated. More importantly, the need to mimic the asymptotic bias requires

the bootstrap to be robust to both serial and cross-sectional dependence. Since none of the

existing bootstrap methods in the literature allows for both forms of dependence, we propose

a new bootstrap method for factor models that has these properties. Our method is based

on an application of the sieve bootstrap to the idiosyncratic residuals of each time series in

the panel data model, where the corresponding innovations are resampled using the cross-

sectional dependent bootstrap proposed by Gonçalves and Perron (2020). We show that this

bootstrap method is asymptotically valid when each idiosyncratic error in the factor model

is generated by an AR(↓) process with innovations that are potentially cross-sectionally

correlated across the panel. A special case of this new bootstrap method is considered by

Gonçalves, Koh, and Perron (2024) when testing for the number of common factors in group

factor models (as proposed by Andreou, Gagliardini, Ghysels, and Rubin (2019)) without

theoretical justification.
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We illustrate the good finite sample performance of the plug-in bias estimator and the

bootstrap using Monte Carlo simulations. In particular, the results show that it is important

to correct the bias due to the estimation of the factors in the first step. Although both the

plug-in bias correction and the bootstrap methods replicate the bias well, the bootstrap

outperforms the plug-in bias estimator by further reducing the coverage rate distortions.

Finally, we apply our new inference methods to an empirical application where we nowcast

quarterly U.S. real GDP growth rate using monthly macroeconomic factors. The results

show that there is a significant bias, thereby indicating the importance of correcting it.

The rest of this paper is organized as follows. In Section 2, we derive the asymptotic

distribution of the factor-augmented MIDAS regression model and propose a plug-in bias

estimator. In Section 3, we propose and theoretically justify the bootstrap. The simulation

results are shown in Section 4, and the empirical application is discussed in Section 5.

Section 6 concludes the paper.

For any matrix A, ↔A↔ denotes its Frobenius norm defined as ↔A↔ = (trace(A→A))1/2.

ω(A) denotes the Euclidean vector norm of the vector Ax: ω(A) = max↑x↑=1 ↔Ax↔, where

↔Ax↔ = (x→A→Ax)1/2.

2 Asymptotic Theory

2.1 Factor-augmented MIDAS regression models

The MIDAS regression model projects high-frequency variables onto a target variable, which

is denoted as yt. The regressors are observed at most m times between t and t↗1. To handle

variables sampled at mixed frequency, a MIDAS regression aggregates the high-frequency

variables with a lag polynomial function. The basic MIDAS regression model with a single
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observed regressor xt can be written as follows:

yt = ε0 + ε1W (L1/m; ϑ)xt + ϖt, t = 1, . . . , T, (1)

where W (L1/m; ϑ) =
∑

K

k=1
wk(ϑ)Lk/m and Lk/mxt = xt↓k/m. Here, wk(ϑ) is a weighting

function that temporally aggregates the regressor and its lags, and ϑ is a p ↘ 1 vector of

weighting parameters. To identify ε1, we assume that wk(ϑ) ≃ (0, 1) and
∑

K

k=1
wk(ϑ) = 1.

A common weighting scheme in the MIDAS regression model is the exponential Almon lag

with two parameters such that

wk(ϑ) =
exp(ϑ1k + ϑ2k2)

∑
K

k=1
exp(ϑ1k + ϑ2k2)

. (2)

Other weighting schemes include the beta function and the linear function (see Ghysels,

Valkanov, and Serrano (2009) for detail).

In this paper, we consider the factor-MIDAS regression model, which employs unobserved

high-frequency factors as regressors. In particular, letting the regressor xt in (1) be replaced

by a latent factor, we write the model as follows.

yt = ε0 + ε1W (L1/m; ϑ)ft + ϖt = ε0 + ε1

K∑

k=1

wk(ϑ)ft↓k/m + ϖt, t = 1, . . . , T,

where ft↓k/m is a (single) factor in the following panel factor model,

Xt↓k/m = #ft↓k/m + et↓k/m, k = m↗ 1, . . . , 0, and t = 1, . . . , T. (3)

The factor model includes factor loadings denoted by # and an idiosyncratic error term,

et↓k/m. If there are r unobserved factors, represented by a r ↘ 1 vector of common factors

5



denoted by ft↓k/m in the factor model (3), then the model can be generalized as follows.

yt = ε0 + ε→
1
W (L1/m; ϑ)ft + ϖt = ε0 + ε→

1
Ft(ϑ) + ϖt, t = 1, . . . , T, (4)

where ε1 = (ε1,1, . . . , ε1,r)→, and ϑ = (ϑ→
1
, . . . , ϑ→

r
)→ with ϑj = (ϑj,1, . . . , ϑj,p)→, a p↘ 1 weighting

parameter1 for j-th factor, for j = 1, . . . , r. We define Ft(ϑ) ⇐ W (L1/m; ϑ)ft in the second

equality. In fact, the temporal aggregation in this generalized model applies on a vector as

Ft(ϑ) =
K∑

k=1

wk(ϑ)L
k/mft =

K∑

k=1

wk(ϑ)ft↓k/m,

where wk(ϑ) is a r↘ r diagonal matrix such that wk(ϑ) ⇐ diag(wk,1(ϑ1), . . . , wk,r(ϑr)), where

wk,j(ϑj) is the weight for the k-th lag of the j-th factor.2 To derive the distribution in the

next section, we further simplify the general factor-MIDAS regression model (4) to

yt = g(Ft,ϱ) + ϖt, t = 1, . . . , T, (5)

where g(Ft,ϱ) = ε0+ε→
1
Ft(ϑ), ϱ = (ε→, ϑ→)→ with ε = (ε0, ε→

1
)→, and Ft = (1, f →

t
, f →

t↓1/m
, . . . , f →

t↓K/m
)→.

For convenience, we use the high frequency time index denoted by th = 1, . . . , TH , where

TH = mT . We derive this by noting that th = m((t ↗ 1) + i/m) for i = 1, . . . ,m, and

t = 1, . . . , T .3 Using this notation, we can write the factor model as Xth
= #fth + eth , for

th = 1, . . . , TH . Using the matrix notation, we write the factor model as X = f#→+ e, where

X is a TH ↘N matrix of high-frequency time series, f = (f1, . . . , fTH
)→ is a TH ↘ r matrix of

common factors, and e is a TH ↘N matrix of idiosyncratic errors.4

1Note that at least one component of ω1 needs to be non-zero to identify the weighting parameters, ε.
2Note that when m = 1 and K = 0, the factor-MIDAS regression model is equivalent to the standard

factor-augmented regression model in GP (2014).
3With this notation, a high-frequency observation at th is equivalent to observing it at the i-th intra-period

between t↗1 and t. Note that the time notation in the factor model (3) can be written as (t↗1)+(m↗k)/m.
4One may consider a situation where X includes variables with di”erent frequencies, such as monthly

and quarterly, while yt is observed annually. In this case, the group factor model discussed in Andreou et
al. (2019) can be exploited to extract the factors.
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2.2 Asymptotic Theory

We denote NLS estimators by ϱ̂ when the factors are observed. Then, Andreou, Ghysels,

and Kourtellos (2010) show that the limiting distribution of ϱ̂ is as following:

→
T (ϱ̂↗ ϱ0)

d↗↑ N(0,$↓1%$↓1), (6)

where ϱ0 = (ε→, ϑ→)→, $ = E[gω,tg→ω,t], and % = E[ϖ2
t
gω,tg→ω,t] with gω,t = ςg(Ft,ϱ)/ςϱ. When

the true factors are observed, the estimators are normally distributed with mean zero and a

sandwich variance.

In factor-MIDAS models, however, the factors are latent, and we have to estimate them.

Accordingly, the estimation in the factor-MIDAS regression model proceeds in two steps.

First, we estimate the common factors from a panel dataset of high-frequency indicators

by principal component analysis (PCA). The estimated factors, f̃ , are equivalent to
→
TH

times the eigenvectors of XX →/THN corresponding to the r largest eigenvalues (in decreasing

order). The estimated factor loadings are #̃ = X →f̃/TH .5 Second, we estimate the parameters

ε and ϑ using nonlinear least squares (NLS) by regressing the low frequency variable on

the temporally aggregated estimated factors at high-frequency. In the factor model, the

estimated factors f̃t are only consistent for Hft, where the rotation matrix H is defined

as H = Ṽ ↓1 f̃
→
f

TH

!
→
!

N
, and Ṽ is a r ↘ r diagonal matrix of eigenvalues of XX →/THN in a

descending order (for more details, see Bai (2003)). By incorporating the estimated factors

in the regression and noting the rotation of the factors, we can rewrite (4) as follows.

yt = ε0 + ε→
1
H↓1F̃t(ϑ) + ε→

1
H↓1(HFt(ϑ)↗ F̃t(ϑ)) + ϖt = g(F̃t,ϱ) + φt, (7)

5When TH > N , we use normalization such that #→#/N = Ir and f →f is a diagonal matrix, which is com-
putationally easier. In this case, #̃ is the matrix of

→
N times the eigenvectors of X →X/THN corresponding

to the r largest eigenvalues and the estimated factors are f̃ = X#̃/N .
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where g(F̃t,ϱ) = ε0 + ε→
1
H↓1F̃t(ϑ), ϱ = (ε0, ε→

1
H↓1, ϑ→)→, and F̃t(ϑ) =

∑
K

k=1
wk(ϑ)f̃t↓k/m.

The coe!cient on the aggregated factors estimates ε→
1
H↓1. Moreover, the estimation error

of the factors implies that the regression error term is φt = ε→
1
H↓1(HFt(ϑ) ↗ F̃t(ϑ)) + ϖt.

We denote the NLS estimators of ϱ in (7) by ϱ̃ = (ε̃→, ϑ̃→)→ to distinguish from ϱ̂ = (ε̂→, ϑ̂→)→,

which are the estimators from the regression of yt on the true factors ft. Next, we derive

the limiting distribution of
→
T (ϱ̃ ↗ ϱ) under the assumption that

→
T/N ↑ c, where 0 ⇒

c < ↓. Note that although the variable of interest is a linear function of factor estimation

error similar to the factor-augmented regression models, there exists a nonlinear weighting

function. Furthermore, unlike standard factor-augmented regression models, the lags of the

factors are incorporated. As will be demonstrated in the next theorem, the incorporation of

the lags of the factors results in the fact that the asymptotic bias relies on the time-series

dependence and cross-sectional dependence in the idiosyncratic error term.6

The asymptotic distribution of the estimators is derived under Assumptions A.1 - A.6

in Section A in Online Appendix. We also introduce the following notations: V ⇐ plim Ṽ ,

Q ⇐ plim
(

f̃
→
f

TH

)
, Qk ⇐ plim

(
1

TH↓k

∑
TH

th=k+1
f̃ →
th
fth↓k

)
, and $

f̃
⇐ V ↓1Q&Q→V ↓1, which is the

asymptotic variance of
→
N(f̃th ↗Hfth).

7 The asymptotic variance of the factor estimation

error is a function of &, which is defined by & ⇐ limN↔↗ V ar
(

!
→
et

h↘
N

)
. We assume that the

idiosyncratic errors in the factor model, eth is stationary in Assumption A.2-(d). Under the

stationarity of the idiosyncratic errors, we also denote &k ⇐ limN↔↗ Cov
(

!
→
et

h
↑k↘

N
,
!
→
et

h↘
N

)
.

Note that by the identification assumption, Assumption A.1-(d) in Online Appendix, we

have Q = H0, where H0 = plimH, and H0 is a diagonal matrix of ±1, where the sign is

determined by the sign of f̃ →f/TH (for the detail of the proof, see the proof of (2) in Bai and

6Note that the time-series dependence in the idiosyncratic error term does not appear in the asymptotic
bias in the standard factor augmented regression models. For detail, see GP (2014) (their Theorem 2.1).

7For the details, see Bai (2003).
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Ng (2013)). Therefore, the asymptotic variance can be also written as $
f̃
= V ↓1H0&H →

0
V ↓1.

Theorem 2.1 (Asymptotic distribution of the estimators in the factor-MIDAS models)

If
→
T/N ↑ c, where 0 ⇒ c < ↓, and Assumptions A.1 - A.6 in Section A in Online Ap-

pendix hold,

→
T (ϱ̃↗ ϱ)

d↗↑ N(↗c’ω,$ω), (8)

where $ω ⇐ (
→↓1

0
$↓1%$↓1(↓1

0
with (0 = diag(1, H0, Ip), and

’ω =




’ε

’ϑ



 = ((0$(
→
0
)↓1




Bε

Bϑ



 . (9)

Bε = (Bε0 , B
→
ε1
)→ and Bϑ are such that Bε0 = 0,

Bε1 =
[ K∑

k=1

wk(ϑ)
{
$

f̃
+ V $

f̃
V ↓1

}
wk(ϑ)

+
K∑

k=1

K∑

l ≃=k

wk(ϑ)
{
V ↓1H0&k↓lH

→
0
V ↓1 +Qk↓l&H

→
0
V ↓2

}
wl(ϑ)

]
plim(ε̃1), (10)

and

Bϑ = plim(ε̃1) ⇑
[ K∑

k=1

ςwk(ϑ)

ςϑ

{
$

f̃
+ V $

f̃
V ↓1

}
wk(ϑ)

+
K∑

k=1

K∑

l ≃=k

ςwk(ϑ)

ςϑ

{
V ↓1H0&k↓lH

→
0
V ↓1 +Qk↓l&H

→
0
V ↓2

}
wl(ϑ)

]
plim(ε̃1), (11)

where
ϖwk(ϑ)

ϖϑ
⇐ diag

(
ϖwk,1(ϑ1)

ϖϑ1
, . . . , ϖwk,r(ϑr)

ϖϑr

)
is a block diagonal matrix and the j-th diagonal

block is a p↘ 1 vector given by
ϖwk,j(ϑj)

ϖϑj
for j = 1, . . . , r.

In (11) in Theorem 2.1, we use the Hadamard product which is equivalent to (A ⇑B)ij =

AijBij. More specifically, ε ⇑ ϖwk(ϑ)

ϖϑ
is a block diagonal matrix where the j-th diagonal block

contains εj

ϖwj,k(ϑj)

ϖϑj
for j = 1, . . . , r. Based on Theorem 2.1, the bias of the estimators is
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proportional to c, the limiting value of
→
T/N , and also to plim(ε̃1) = (H↓1

0
)→ε1. This implies

that the estimates are biased unless ε1 = 0 or c = 0. Additionally, the asymptotic variance

of the estimated factors, $
f̃
, a”ects the bias. Since the variance of the factor estimation

error depends on &, which is a variance of the scaled average of the factor loadings and

the idiosyncratic errors in the factor model, the cross-sectional dependence of factor errors

matters. These findings are similar to the bias in the context of GP (2014).

It is important to highlight two main di”erences in the asymptotic bias between the

factor-MIDAS regression model and standard factor-augmented regression models. Firstly,

the bias in the MIDAS regression model depends on the weighting scheme, wk(ϑ), due to a

temporal aggregation.8 Secondly, the bias depends on the covariance of the cross-sectional

average of factor loadings and the idiosyncratic error terms between two distinct periods,

represented as &k↓l. This term arises due to the presence of the lags of the estimated

factors. To see this, consider a simple factor-augmented regression model with a lag and

without mixed-frequency variables as follows.

yt = ε1ft + ε2ft↓1 + ϖt = ε→Ft + ϖt,

where ε = (ε1, ε2)→ and Ft = (ft, ft↓1)→. We assume that the factor is a single factor for

simplicity. By the fact that the factors are estimated, we can rewrite it as follows.

yt = ε→H↓1F̃t + ε→H↓1(HFt ↗ F̃t) + ϖt.

Note that since we include a lag of the factor, we have a factor estimation error at t ↗ 1

as well as contemporaneous factor estimation error. Letting ε̂ be OLS estimator from a

8When there is no temporal aggregation, the MIDAS regression becomes unrestricted MIDAS (U-MIDAS)
proposed by Foroni, Marcellino, and Schumacher (2015). If the estimated factors are used as predictors in
U-MIDAS, there will be bias that depends on cross-sectional and serial dependence of the idiosyncratic error
term in the factor model, by the fact that lags of the estimated factors are present.
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regression of yt on F̃t, we can show that

→
T (ε̂ ↗H↓1ε) =

(
1

T

T∑

t=1

F̃tF̃
→
t

↓1

1→
T

T∑

t=1

F̃tϖt +
→
T

(
1

T

T∑

t=1

F̃tF̃
→
t

↓1

1

T

T∑

t=1

F̃t(HFt ↗ F̃t)
→H↓1ε.

In fact, we can show that 1

T

∑
T

t=1
F̃t(F̃t ↗ HFt)→

p↗↑ 1

N

(
1

T

∑
T

t=1
V ar

(→
N(F̃t ↗HFt)

))
=

Op(1/N) by Bai (2003) (see their Lemma B.2) and GP (2014). Therefore, the second term

is Op(
→
T/N) and drives the asymptotic bias under the rate condition such that

→
T/N ↑ c

for 0 ⇒ c < ↓. In GP (2014), since the contemporaneous factor is the sole predictor in

their factor-augmented regression model, the variance of contemporaneous factor estimation

error appears alone. More specifically, the bias is driven by 1

T

∑
T

t=1
V ar

(→
N(f̃t ↗Hft)

)
,

which depends on 1

T

∑
T

t=1
V ar

(
!
→
et↘
N

)
. This term implies that the bias depends solely on

the cross-sectional dependence of the idiosyncratic error term in the factor model. However,

when we incorporate a lag of the factor as a predictor alongside the contemporaneous factor,

the covariance between the factor estimation error at t and t ↗ 1 becomes relevant, which

depends on 1

T

∑
T

t=1
Cov

(
!
→
et↘
N
, !

→
et↑1↘
N

)
. Thus, the inclusion of the lag of the factor indicates

that the bias depends not only on the cross-sectional dependence, but also on the time-series

dependence of the idiosyncratic error term in the factor model.9

In the factor-MIDAS regression model, the inclusion of lagged estimated factors intro-

duces additional complexity. Similar to the previously discussed simple case, we have an

extra term such that 1

TH↓k

∑
TH

th=k+1
Cov(

→
N(f̃th ↗ Hfth),

→
N(f̃th↓k ↗ Hfth↓k)) for k ⇓= 0,

which depends on 1

TH↓k

∑
TH

th=k+1
Cov

(
!
→
et

h↘
N
,
!
→
et

h
↑k↘

N

)
. Therefore, the bias in our context relies

on the serial dependence as well as cross-sectional dependence of the idiosyncratic error term

in the factor model. This finding holds considerable significance, as the literature surround-

9This also explains why the bias in unrestricted MIDAS (U-MIDAS) regression models augmented by the
factors depends on cross-sectional as well as serial dependence of the idiosyncratic error term in the factor
model.
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ing factor-augmented regression models has primarily concentrated on the cross-sectional

dependence of the idiosyncratic error term. This focus necessitates the development of novel

inference methods that can e”ectively account for the time-series dependence inherent in the

idiosyncratic error term, which appears in our context.

2.3 Plug-in Bias

In this section, we propose an analytical estimator to account for the bias identified in

Theorem 2.1. This is inspired by Ludvigson and Ng (2009), where they propose a plug-in

bias estimator by replacing the unknown quantities with their consistent estimators and

correcting the bias in the context of the factor-augmented regression model. Similarly, we

propose a bias-corrected estimator for factor-augmented MIDAS regression models.

In order to do that, we need a consistent estimator for the term &k, which has never been

explored previously. Note that it depends on the cross-sectional and the serial dependence

of the idiosyncratic error term. When the idiosyncratic error term is serially but not cross-

sectionally correlated, we can estimate this term as &̂k =
1

N(TH↓k)

∑
TH

th=k+1

∑
N

i=1
↼̃i↼̃→

i
ẽi,th ẽi,th↓k,

where &̂k denotes the estimator of &k. However, when the idiosyncratic error term is cross-

sectionally and serially dependent, estimating this term is no longer straightforward, as

discussed in Bai and Ng (2006). To address this issue, Bai and Ng (2006) propose an

estimator for the variance-covariance matrix of the cross-sectional average of factor load-

ings and the idiosyncratic error term, denoted by &. They use the time series observa-

tions and truncation with n < N under the covariance stationarity such that &̂CS-HAC =

1

n

∑
n

i=1

∑
n

j=1
↼̃i↼̃j

1

TH

∑
TH

th=1
ẽi,th ẽj,th .

To propose a method to estimate &k that takes into account cross-sectional and serial

dependence, we take an approach, similar to the one used in Bai and Ng (2006). We use
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the time series observations and a truncation method, that limits n < N observations. We

denote the estimator for &k by &̂k, which is defined as follows.

&̂k,CS-HAC =
1

TH ↗ k

TH∑

th=k+1

1

n

n∑

i=1

n∑

j=1

↼̃i↼̃
→
j
ẽi,th ẽj,th↓k, (12)

where n = min(
→
N,

→
TH). Note that by Assumption A.2-(d), &k does not depend on time.

Theorem 2.2 Suppose the Assumptions A.1 - A.4 in Section A in Online Appendix hold.

Then, for any fixed k = 0, 1, 2, . . . , K ↗ 1

↔&̂k ↗H↓1
→

0
&kH

↓1

0
↔ p↗↑ 0 if

n

min(N, TH)
↑ 0,

Here, in Theorem 2.2, &̂k depends on the assumption on the serial and cross-sectional

dependence in the idiosyncratic errors of the factor model. If there is only serial dependence,

&̂k = 1

N

∑
N

i=1
↼̃i↼̃→

i

1

TH↓k

∑
TH

th=k+1
ẽi,th ẽi,th↓k. If we allow for cross-sectionally dependence ad-

ditionally, &̂k = &̃k,CS-HAC defined in (12). Note that if k = 0, our estimators are equivalent

to the estimators proposed in Bai and Ng (2006). Theorem 2.2 enables us to construct

consistent estimators for (10) and (11) as follows.

B̂ε1 =


2

K∑

k=1

wk(ϑ̃)$̃f̃
wk(ϑ̃) +

K∑

k=1

K∑

l ≃=k

wk(ϑ̃)
{
Ṽ ↓1&̂k↓l,CS-HACṼ

→↓1 + Q̃k↓l&̂CS-HACṼ
↓2

}
wl(ϑ̃)


ε̃1, and

B̂ϑ = ε̃1 ⇑

2

K∑

k=1

ςwk(ϑ̃)

ςϑ
$̃

f̃
wk(ϑ̃) +

K∑

k=1

K∑

l ≃=k

ςwk(ϑ̃)

ςϑ

{
Ṽ ↓1&̂k↓l,CS-HACṼ

↓1 + Q̃k↓l&̂CS-HACṼ
↓2

}
wl(ϑ̃)


ε̃1,

where $̃
f̃
= Ṽ ↓1Q̃&̂CS-HACQ̃Ṽ ↓1 with Q̃ = f̃ →f̃/TH , and Q̃k↓l =

∑
TH

th=k+1
f̃ →
th
f̃th↓k. Note that

the bias estimates can be simpler under the restriction on either cross-sectional or serial

dependence, or both. We denote the bias-corrected estimator by ϱ̂BC such that ϱ̂BC ⇐

ϱ̃↗ (↗ 1

N
’̂ω). Here, ↗’̂ω is the estimate of the bias in ϱ̃, where ’̂ω = $̂↓1(B̂→

ε
, B̂→

ϑ
)→ with $̂

a consistent estimator of $, B̂ε = (B̂ε0 , B̂
→
ε1
)→, and B̂ε0 = 0.
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Proposition 2.1 Suppose the Assumptions A.1 - A.6 in Section A in Online Appendix hold

and
→
T/N ↑ c, where 0 ⇒ c < ↓, then

→
T (ϱ̂BC ↗ ϱ)

d↗↑ N(0,$ω). (13)

Based on Proposition 2.1, the bias corrected estimator no longer contains an asymptotic bias.

However, it is well known that an approach based on asymptotic theory does not perform

well in finite samples. Additionally, the bias takes a very complicated form in our context,

which makes it di!cult to implement. Therefore, we discuss an alternative approach, a

bootstrap method in the next section.

3 Bootstrap method: AR-sieve+CSD bootstrap

In this section, we propose a bootstrap method and show its validity by proving that our

method satisfies bootstrap high level conditions under which any general residual-based

bootstrap is satisfied. We leave the bootstrap high level conditions in the appendix (see

Section C in the Online Appendix).

In particular, we propose a bootstrap procedure, where we resample the factor model

and the MIDAS regression model, and then obtain the bootstrap estimates. Note that in

Theorem 2.1, we show that the asymptotic bias in our context relies on the cross-sectional

and serial dependence in the idiosyncratic error term in the factor model, therefore, it is

crucial that the bootstrap resampled idiosyncratic error term in the factor model mimics

these dependences. To the best of our knowledge, replicating the time-series dependence in

the error term in the factor model has not been studied in the literature. GP (2014) propose

a wild bootstrap and prove its validity in the context of the factor-augmented regression
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models under no cross-sectional dependence in the error term in the factor model.10 To allow

for cross-sectional dependence, Gonçalves and Perron (2020) propose a bootstrap method

that utilizes a thresholding technique to allow for the cross-sectional dependence, so-called

CSD (cross-sectional dependent) bootstrap. However, these methods cannot be used in our

context as it destroys the serial dependence in the idiosyncratic error terms.

On the other hand, to resample the error term in the MIDAS regression model, GP (2014)

propose a wild bootstrap under the assumption that the regression error terms follow mar-

tingale di”erence sequence. Djogbenou, Gonçalves, and Perron (2015) propose a block wild

bootstrap and a dependent wild bootstrap to resample the regression error terms to account

for serially correlated regression error terms. Depending on the assumption a researcher is

willing to make, either the approach proposed by GP (2014) or by Djogbenou et al. (2015)

can be similarly applied to resample the regression error terms in our context. In this paper,

for simplicity, we rely on the assumption that the regression error terms follow martingale

di”erence sequence and use the wild bootstrap.

The key finding in our paper is that the bias within our framework is influenced by both

serial and cross-sectional dependence in the idiosyncratic error term in the factor model.

To address this, we propose a novel bootstrap method that can replicate both dependences.

Specifically, we combine autoregressive sieve bootstrap and the CSD bootstrap to resample

the residuals in the factor model.11 The autoregressive sieve bootstrap, initially introduced by

Bühlmann (1997) and further explored by Kreiss, Paparoditis, and Politis (2011) and Meyer

and Kreiss (2015), has been e”ectively applied to the estimated factors by Bi, Shang, Yang,

10Note that the asymptotic bias in the factor augmented regression models studied in GP (2014) only
depends on the cross-sectional dependence. For detail, see GP (2014).

11Note that we cannot use block-based bootstrap or dependent wild bootstrap to account for serial depen-
dence, because these bootstrap methods induce a zero cross-sectional dependence. (For detail, see Gonçalves
and Perron (2020).)
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and Zhu (2021). In our paper, we combine this method with the CSD bootstrap method

and apply it to the residuals in the factor model, which we refer to as the AR-sieve+CSD

bootstrap method. A more restricted version of our approach is recently considered by

Gonçalves et al. (2024), where they substitute the autoregressive sieve bootstrap with an

autoregressive parametric bootstrap of order one, albeit without theoretical justification.

Also, as addressed in Bühlmann (1997), the autoregressive sieve bootstrap method o”ers

more flexibility than a parametric autoregressive model, which is highly subject to model

misspecification. The AR-sieve+CSD bootstrap method resamples each time series residual

in the factor model through an autoregressive sieve process, while the corresponding inno-

vations are resampled by the CSD bootstrap method. This approach e”ectively captures

cross-sectional dependence in the innovation terms through the CSD bootstrap method and

the serial dependence through the autoregressive process. The detailed algorithm to use

the AR-sieve+CSD bootstrap to resample the residuals in the factor model can be found in

Algorithm 1.12 In Algorithm 1, we resample the residuals in the factor model similar to the

bootstrap procedure in Kreiss et al. (2011) and Bühlmann (1997). The di”erence is that we

resample the innovation terms in the autoregressive process using CSD bootstrap proposed

by Gonçalves and Perron (2020).

One might consider utilizing high-dimensional vector autoregressive (VAR) models to

resample the idiosyncratic error term in the factor model. Recent studies, such as those

by Kock and Callot (2015) and Krampe, Kreiss, and Paparoditis (2021), have explored this

high-dimensional VAR model. Kock and Callot (2015) establishes oracle inequalities for both

LASSO and adaptive LASSO estimators in the context of high-dimensional VAR models.

Meanwhile, Krampe et al. (2021) develops a bootstrap method applicable to this framework.

12The full bootstrap procedure to obtain the bootstrap estimators can be found in the Online Appendix.
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Algorithm 1 : AR-sieve + CSD Bootstrap for the factor model
For th = 1, . . . , TH , let

X⇐
i,th

= ↼̃→
i
f̃th + e⇐

i,th
and X⇐

th
= #̃f̃th + e⇐

th
,

where e⇐
i,th

is obtained as follows.
For each i = 1, . . . , N , select an order pi = pi(TH), pi << TH , for example, by an information
criterion such as the Akaike information criterion (AIC), and fit a pi-th order autoregressive
model to ẽi,1, . . . , ẽi,TH

, where ẽi,th = Xi,th
↗↼̃if̃th . We denote ↽̃i(pi) = (↽̃i,j(pi), j = 1, . . . , pi),

the Yule-Walker autoregressive parameter estimators, such that ↽̃i(pi) = &̃(pi)↓1⇀̃pi , with
⇀̃pi = (⇀̃e(1), ⇀̃e(2), . . . , ⇀̃e(pi))→ and &̃(pi) = (⇀̃e(r ↗ s))r,s=1,2,...,pi

such that

⇀̃e(⇁) =
1

TH

TH↓|ϱ |∑

th=1

(ẽi,th ↗ ēi)(ẽi,th+|ϱ | ↗ ēi), (14)

for ⇁ = 0, . . . , pi and ēi = T↓1

H

∑
TH

th=1
ẽi,th .

With chosen lag length pi = pi(TH),

e⇐
i,th

=
pi∑

j=1

↽̃i,j(pi)e
⇐
i,th↓j

+ u⇐
i,th

, for th = 1, . . . , TH , (15)

where u⇐
th

= (u⇐
1,th

, . . . , u⇐
N,th

) = $̃1/2

u ηth with ηth ⇔ i.i.d (0, IN). The initial conditions are
e⇐
i,0
, . . . , e⇐

i,1↓pi
= 0, for i = 1, . . . , N , which is equivalent to the stationary mean of e⇐

i,th
in the

bootstrap world. Following Gonçalves and Perron (2020), we choose $̃u by a thresholding
technique such that

$̃u = (σ̂u,ij)i,j=1,...,N ,

with

σ̂u,ij =


σ̃u,ij i = j

σ̃u,ij1 (|σ̃u,ij| > ▷) i ⇓= j,
with σ̃u,ij =

1

TH

TH∑

th=1

ũi,th
ũj,th

,

where ▷ is a threshold and ũi,th
= ẽi,th ↗

∑
pi

j=1
↽̃i,j(pi)ẽi,th↓j for i = 1, . . . , N and th =

1 + pi, . . . , TH .

In our paper, we do not address the high-dimensional VAR model due to the complexities

involved in its theoretical justification in our framework, opting instead to reserve this for

future research.

In order to prove our bootstrap method is valid, we assume that {ei,th}
TH

th=1
is an infi-
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nite order moving average process that can be represented as an AR(↓) process such that

ei,th =
∑↗

j=1
↽i,jei,th↓j + ui,th

, for th = 1, . . . , TH and i = 1, . . . , N . The innovation terms

in AR(↓) process, uth
= (u1,th

, . . . , uN,th
)→, are identically and independently distributed

from a distribution with mean zero and finite variance, $u. Here, $u is assumed to be

non-diagonal to account for cross-sectional dependence in the idiosyncratic error term. More

formal representation of the assumptions on our bootstrap method is provided below.

Assumption 1 ↼i are either deterministic such that ↔↼i↔ ⇒ M ⇒ ↓, or stochastic such

that E↔↼i↔24 ⇒ M < ↓ for all i: E↔fth↔24 ⇒ M < ↓; E|ei,th |24 ⇒ M < ↓, for all (i, th);

and for some q > 1, E|ϖt|4q ⇒ M < ↓, for all t.

Assumption 2 E(ϖt|yt, Ft, yt↓1, Ft↓1, . . .) = 0, and Ft = (ft↓1/m, . . . , ft↓k/m)→ and ϖt are

independent of the idiosyncratic errors ei,sh for all (i, sh, t).

Assumption 3 ei,th =
∑↗

j=1
↽i,jei,th↓j+ui,th

, with
∑↗

j=1
(1+|j|)r|↽i,j|8 < ↓ for some r ↖ 0,

for i = 1, . . . , N .

Assumption 4 $u ⇐ E(uth
u→
th
) = (σu,ij)i,j=1,...,N , with uth

= (u1,th
, . . . , uN,th

)→, for all th, i,

j and is such that ↼min($u) > c1 and ↼max($u) < c2 for some positive constants c1 and c2.

Assumption 5 As N, TH ↑ ↓ such that logN/TH ↑ 0,

(a) maxi,j⇒N

 1

TH

∑
TH

th=1
ui,th

uj,th
↗ σu,ij

 = Op

(
logN

TH

)
.

(b) maxi⇒N

 1

TH

∑
TH

th=1
fthui,th

 = Op

(
logN

TH

)
.

Assumptions 1 and 2 are similar to the Assumptions 6 and 7 in GP (2014), except

that we need higher moments in Assumption 1. We require a large number of moments

because our proof relies on repeated applications of Cauchy-Schwarz’s inequality to prove
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the validity of our bootstrap method under cross-sectional and serial dependence. If we

further assume that the factors, factor loadings, and idiosyncratic error terms are mutually

independent, then having E↔↼i↔8 ⇒ M , E↔fth↔8 ⇒ M , and E|ei,th |16 ⇒ M are su!cient.

Assumption 2 justifies that we use wild bootstrap in the second step as the regression error

term is a martingale di”erence sequence. This assumption can be relaxed to allow for serial

correlation in the regression error term and block-based bootstrap can be applied as explained

in Djogbenou et al. (2015). Furthermore, in Assumption 3, we assume that idiosyncratic

error term is a stationary autoregressive (AR) process of infinite order with polynomial

decaying coe!cients. In the proof of Section 3 (see Section C in Online Appendix), we

show that r = 4 is su!cient. Finally, Assumption 4 and Assumption 5 are similar to

the CS and TS assumptions in Gonçalves and Perron (2020) (on the idiosyncratic error

terms) and Gonçalves et al. (2024) (on the innovations of the idiosyncratic error terms). We

assume that the variance-covariance matrix of the innovation terms is time-invariant and the

innovation terms are weakly dependent in cross-sectional dimension. Under these additional

assumptions, we show the validity of the AR-sieve +CSD bootstrap method in the following

theorem.

Theorem 3.1 Suppose that autoregressive sieve with CSD (AR-sieve + CSD) bootstrap and

wild bootstrap are used to generate {e⇐
i,th

} and {ϖ⇐
t
}, respectively with E⇐|ηi,th |4 < C for all

(i, th) and E⇐|◁t|4q < C for all t, for some q > 1. If Assumptions A.1 - A.6 in Section A in

Online Appendix and Assumptions 1 - 5 hold,

sup
x⇑Rr+p

|P ⇐(
→
T ((⇐

0
ϱ̃⇐ ↗ ϱ̃) ⇒ x)↗ P (

→
T (ϱ̃↗ ϱ) ⇒ x)| p↗↑ 0,

where (⇐
0
= diag(1, H⇐

0
, Ip) with H⇐

0
= plimH⇐

and H⇐ = Ṽ ⇐↓1 f̃
↓→
f̃

TH

!̃
→
!̃

N
, which is a bootstrap

analogue of rotation matrix, H.
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4 Monte Carlo Simulation

In this section, we confirm the presence of bias in the factor-MIDAS regression models,

and show the finite sample performance of both inference methods we propose. The data

generating process (DGP) is similar to GP (2014) and Aastveit, Foroni, and Ravazzolo

(2017). We consider the factor-MIDAS regression model with a single factor model as follows.

yt = ε0 + ε1

K∑

k=1

wk(ϑ)ft↓k/m + ϖt, (16)

Xi,t↓k/m = ↼ift↓k/m + ei,t↓k/m, k = m↗ 1, . . . , 0. (17)

For a weighting function, wk(ϑ), for k = 1, . . . , K, we use the exponential Almon lag with

two parameters, (2).

The factors and factor loadings are generated similarly to GP (2014). The single factor ft

is randomly drawn from a standard normal distribution independently over time. The factor

loading, ↼i is randomly drawn from a uniform distribution of the interval [0, 1] independently

across indicators, i. We consider that the high-frequency variable is observed at most 3 times

between t ↗ 1 and t (equivalent to low-frequency data being quarterly and high-frequency

data being monthly), which implies m = 3. The parameters are ε0 = 0, ε1 = 2.5, ϑ1 = 0.007,

and ϑ2 = ↗0.01. We choose the weighting parameters similar to Aastveit et al. (2017) to

induce fast-decaying weights.

Table 1 shows six di”erent scenarios to generate the idiosyncratic error terms and MI-

DAS regression error terms. We consider the error term in the regression model to be either

homoskedastic or heteroskedastic. In DGP 1, we consider homoskedastic error term and

in the rest of the DGPs, the error terms are conditionally heteroskedastic. When they are

homoskedastic, the errors are drawn independently and identically from a standard nor-
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Table 1: Data generating process

DGP ϖt ei,th

1 N(0, 1) N(0, 1)

2 ϖt =
→
htvt N(0, 1)

3 ϖt =
→
htvt N(0, σ2

i
)

4 ϖt =
→
htvt AR + N(0, σ2

i
)

5 ϖt =
→
htvt CS + N(0, 1)

6 ϖt =
→
htvt CS + AR

where ht = 0.1 + 0.3ϑ2
t↑1 + 0.6ht↑1 and

ϖt ⇔ i.i.d.N(0, 1) for t = 1, . . . , T and th =
1, . . . , TH .

mal distribution. To allow for heteroskedasticity, we assume that the error terms follow

a GARCH model, which implies that they are conditionally heteroskedastic but uncondi-

tionally homoskedastic. Particularly, we use the same process as in Aastveit et al. (2017):

ϖt =
→
htvt, where ht = 0.1 + 0.3ϖ2

t↓1
+ 0.6ht↓1 and vt ⇔ i.i.d.N(0, 1).

For the idiosyncratic term in the factor model, we use the same data-generating pro-

cess in GP (2014). In DGP 1 and DGP 2, the idiosyncratic error terms are homoskedastic

by randomly generating them from a standard normal distribution. DGP 3 induces het-

eroskedasticity in the idiosyncratic term, where the variance for each indicator is drawn

from U [0.5, 1.5]. DGP 4 introduces the serial correlation by generating the idiosyncratic

term from an autoregressive model of order one such that ei,th = ωiei,th↓1 + ui,th
, where

ui,th
⇔ i.i.d.N(0, 1). For simplicity, we let ωi = ω for all i = 1, . . . , N , and ω = 0.5. The

idiosyncratic terms are re-scaled by (1↗ω2)1/2 so that the variance of the idiosyncratic error

terms is 1. DGP 5 allows for cross-sectional dependence in the homoskedastic idiosyncratic

terms as in GP (2014) and Bai and Ng (2006). Precisely, we let the correlation between

ei,th and ej,th be 0.5|i↓j| for |i ↗ j| ⇒ 5 and 0 for otherwise. In DGP 6, the idiosyncratic
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error terms have both serial and cross-sectional dependence. The idiosyncratic error terms

follow the autoregressive process of order 1 with the innovation term being cross-sectionally

correlated. The idiosyncratic terms in DGP 5 and 6 are also re-scaled to have the variance

1, the same as in other designs.

To focus on the bias, which arises by the fact that the factors are estimated, we do not

estimate the number of the factors in the estimation process. Instead, we assume that we

know that there is a single factor. We report the size of the bias in a slope coe!cient for

the single factor, ε1. Mainly, we report two sets of results: based on asymptotic theory and

based on the bootstrap method. The bias based on asymptotic theory is reported when we

use the true factor, the estimated factor, and the plug-in bias estimator. We also impose

that we know Cov(ei,th , ei,th↓k) = 0 for k > 1, and therefore we only compute the plug-in

bias estimator up to the first degree covariance term. The other set of results includes the

bias based on two di”erent bootstrap methods: wild bootstrap (WB) and AR-sieve+CSD

bootstrap. For AR-sieve+CSD bootstrap, we choose a lag order for each series by AIC. Note

that the wild bootstrap is only valid when the idiosyncratic error terms do not have serial and

cross-sectional dependence, DGP 1 - 3. For the rest of the designs, the wild bootstrap is not

valid. Therefore, under more general settings (DGP 4 - 6), we can quantify the cost of not

accounting for either time-series or cross-sectional dependence or both in the idiosyncratic

error term by comparing two bootstrap methods.

To compute the size of bias, we use the approach described in GP (2014). The bias in

the original sample is calculated as the average of Hε̃1↗ε1. This guarantees each estimator

in the replication to be consistent for ε1. In the bootstrap world, similarly, we compute

the bias of the bootstrap estimator as the average of HH⇐ε̃⇐
1
↗ Hε̃1. We also report the

95% coverage rate for the associated estimators: estimated factors, plug-in bias and two
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bootstrap methods. The coverage rates associated with the bootstrap methods are reported

by using the bootstrap equal-tailed percentile-t method.

All our simulation results are based on 5000 replications and 399 bootstraps. We consider

T = 50, 100, 200 and N = 50, 100, 200. Since the high frequency variable is observed m = 3

times more, the time-series dimensions in the factor model as 150, 300, and 600, respectively.

We chooseK = 11, which implies that a low-frequency variable can be explained by 11 lagged

monthly factors.

Since the results of DGP 1 - 3 are very similar, we leave the results of DGP 1 - 2 in

the Online Appendix. The results of DGP 3 and 4 are presented in Table 2. In both

scenarios, the MIDAS regression error terms are now heteroskedastic for both DGPs. The

idiosyncratic error terms are heteroskedastic in DGP 3. We find that there exists a bias

when we use the estimated factor and the plug-in estimator overestimates the magnitude

of the bias, especially in small samples. Both bootstrap methods outperform the plug-in

estimator in terms of replicating the bias size and correcting the distortion. In DGP 4,

the idiosyncratic error terms exhibit not only heteroskedasticity but also display serially

dependence. In contrast to DGP 3, the bias size increases as we introduce serial dependence

in the error term of the factor model, and it is about twice as large as that in DGP 3. This

is consistent with the asymptotic bias result in Theorem 2.1, where time-series dependence

contributes to the bias. The plug-in bias is no longer overestimating the bias size.13

Comparing the two bootstrap methods, it is evident that AR-sieve+CSD bootstrap

method performs better than the wild bootstrap method in DGP 4 - 6. Note that the

wild bootstrap is no longer valid under serial dependence. In fact, for some sample sizes, the

13It is important to note that since the bias depends on the serial dependence, the persistence in the
idiosyncratic error term may also have an impact. We have observed that with an increase in persistence,
the bias also increases (documented in Table 1 in Section D in Online Appendix).
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Table 2: DGP 3 & DGP 4 - Bias and coverage rate of 95% CIs for ε

N = 50 N = 100 N = 200

T = 50 100 200 50 100 200 50 100 200

TH = 150 300 600 150 300 600 150 300 600

DGP 3:
hetero &
hetero

bias

True Factor 0.00 -0.01 0.00 -0.01 0.00 0.00 0.01 0.00 0.00

Estimated Factor -0.37 -0.34 -0.32 -0.22 -0.19 -0.17 -0.12 -0.11 -0.10

Plug-in -0.41 -0.36 -0.35 -0.22 -0.20 -0.19 -0.11 -0.11 -0.10

WB -0.27 -0.26 -0.26 -0.17 -0.16 -0.15 -0.11 -0.10 -0.09

AR-sieve+CSD -0.26 -0.26 -0.25 -0.17 -0.16 -0.15 -0.11 -0.10 -0.09

95% coverage rate

Estimated Factor 75.0 72.6 63.9 85.0 85.5 84.4 88.5 90.3 91.0

Plug-in 80.9 87.9 88.9 86.8 89.3 92.1 88.9 91.1 92.5

WB 91.7 94.2 92.7 92.6 93.5 94.1 91.3 93.9 93.8

AR-sieve+CSD 93.7 92.1 90.4 93.6 94.3 94.1 94.1 95.1 93.6

DGP 4:
hetero &

AR

bias

True Factor 0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00

Estimated Factor -0.64 -0.57 -0.54 -0.41 -0.35 -0.31 -0.28 -0.21 -0.18

Plug-in -0.45 -0.42 -0.41 -0.26 -0.26 -0.25 -0.14 -0.14 -0.14

WB -0.22 -0.22 -0.22 -0.15 -0.14 -0.14 -0.10 -0.09 -0.08

AR-sieve+CSD -0.38 -0.37 -0.36 -0.29 -0.26 -0.25 -0.22 -0.18 -0.16

95% coverage rate

Estimated Factor 52.2 44.5 29.2 72.3 71.8 67.3 81.5 85.0 84.1

Plug-in 72.0 77.1 77.1 81.1 86.0 87.9 85.0 90.1 91.3

WB 82.8 79.4 68.7 89.0 88.8 86.1 89.6 92.4 91.3

AR-sieve+CSD 88.7 87.4 81.4 91.9 91.9 91.3 93.6 94.9 93.5

In DGP 3, both error terms are heteroskedastic. In DGP 4, the idiosyncratic error term is generated as the autoregressive
process of lag 1 for each variable and with heteroskedastic. For coverage rates, the results for estimated factors and plug-
ins are based on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile t method.

wild bootstrap even performs worse than the plug-in bias, when it comes to compare the size

of the bias. We can also confirm that the AR-sieve+CSD bootstrap procedure outperforms

the plug-in bias and wild bootstrap procedure by comparing the results of coverage rates,
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particularly in small sample sizes.

Table 3: DGP 5 & DGP 6 - Bias and coverage rate of 95% CIs for ε

N = 50 N = 100 N = 200

T = 50 100 200 50 100 200 50 100 200

TH = 150 300 600 150 300 600 150 300 600

DGP 5:
hetero &
CSD

bias

True Factor 0.00 -0.01 0.00 -0.01 0.00 0.00 0.01 0.00 0.00

Estimated Factor -0.37 -0.34 -0.32 -0.22 -0.19 -0.17 -0.12 -0.11 -0.10

Plug-in -0.41 -0.36 -0.35 -0.22 -0.20 -0.19 -0.11 -0.11 -0.10

WB -0.10 -0.10 -0.10 -0.06 -0.06 -0.04 -0.04 -0.04 -0.03

AR-sieve+CSD -0.16 -0.16 -0.16 -0.10 -0.10 -0.10 -0.06 -0.06 -0.06

95% coverage rate

Estimated Factor 75.0 72.6 63.9 85.0 85.5 84.4 88.5 90.3 91.0

Plug-in 80.9 87.9 88.9 86.8 89.3 92.1 88.9 91.1 92.5

WB 88.7 86.2 79.5 92.7 92.6 90.0 94.2 93.5 93.5

AR-sieve+CSD 90.9 90.0 87.0 93.3 94.1 92.3 94.3 93.9 93.7

DGP 6:
hetero &
CSD+AR

bias

True Factor 0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00

Estimated Factor -0.64 -0.57 -0.54 -0.41 -0.35 -0.31 -0.28 -0.21 -0.18

Plug-in -0.45 -0.42 -0.41 -0.26 -0.26 -0.25 -0.14 -0.14 -0.14

WB -0.08 -0.09 -0.08 -0.06 -0.06 -0.05 -0.04 -0.03 -0.03

AR-sieve+CSD -0.23 -0.23 -0.24 -0.17 -0.16 -0.16 -0.12 -0.10 -0.10

95% coverage rate

Estimated Factor 52.2 44.5 29.2 72.3 71.8 67.3 81.5 85.0 84.1

Plug-in 72.0 77.1 77.1 81.1 86.0 87.9 85.0 90.1 91.3

WB 76.5 66.2 47.4 87.5 84.2 77.6 91.1 91.5 89.3

AR-sieve+CSD 86.3 80.0 73.5 91.0 89.8 87.1 93.2 93.2 92.6

In DGP 5 and 6, both error terms are heteroskedastic. In DGP 5, the idiosyncratic error term contains the cross-sectional
dependence. In DGP 6, we impose the dependence in both dimensions for the idiosyncratic error terms. For coverage
rates, the results for estimated factors and plug-in are based on asymptotic theory. The bootstrap coverage rates use the
bootstrap equal-tailed percentile t method.

Finally, we present the results of DGP 5 and 6, which are shown in Table 3. In DGP

5, the idiosyncratic error term is only cross-sectionally correlated. Comparing the size of
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the bias, the AR-sieve+CSD bootstrap performs better than the wild bootstrap method but

worse than the plug-in bias method. The AR-sieve+CSD bootstrap method recovers the

size distortion better than the plug-in method in most of the cases. The plug-in estimation

method performs better than the AR-sieve+CSD bootstrap method when N = 50 and

T = 200. In DGP 6, we allow for cross-sectional dependence as well as serial dependence in

the idiosyncratic error terms. The results follow a similar pattern to the findings of DGP

5. The plug-in bias method replicates the bias better than bootstrap methods. However, it

does worse than AR-sieve+CSD bootstrap in terms of recovering the size distortion in the

coverage rates except when T = 200. Furthermore, when the time series dimension is as small

as 50, the plug-in bias method performs even worse than the wild bootstrap method, which

is not valid in this design. Overall, the AR-sieve+CSD bootstrap works well in correcting

the distortion.14

5 Empirical Application

In this section, we apply the factor-MIDAS regression model to validate the presence of bias

in an empirical example. It is well documented that incorporating high-frequency indicators

to forecast a quarterly variable using the MIDAS regression model improves the forecast per-

formance (e.g., see Clements and Galvão (2008; 2009), Aastveit et al. (2017), Marcellino and

Schumacher (2010), Andreou, Ghysels, and Kourtellos (2013), and Beyhum and Striaukas

(2024)).

In this paper, we focus on nowcasting quarterly U.S. real GDP growth using monthly

14Similar findings can be found when the AR-sieve+CSD bootstrap is used in the context of the unre-
stricted MIDAS regression model. The performance of AR-sieve+CSD bootstrap dominates the plug-in bias
estimation method in all DGPs. See Table 4 - 6 in Section D in Online Appendix.
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macroeconomic factors from 1984 Q1 to 2022 Q4 including great moderation period. We

have divided this period into two: the long period (1984 Q1 - 2022 Q4), which includes the

COVID pandemic period, and the short period (1984 Q1 to 2019 Q4). Although we look

into two di”erent periods, the results are very similar; therefore, we present the results for

the shorter period in the Online Appendix. Our nowcasting model is similar to the model

in Beyhum and Striaukas (2024). Given the number of leading months, l = 1, 2, 3, we write

our model as follows.

yt = ε0 +

py∑

i=1

ωiyt↓i + ε→
1

K↓l∑

k=1↓l

w(k↓1)+l(ϑ)ft↓1↓(j↓1)/m + ϖt, (18)

where yt is quarterly U.S. GDP growth rate. We denote common factors containing timely

information about monthly macroeconomic predictors by ft↓k/m. The number of leading

months represents a nowcasting horizon, denoted by h. For instance, l = 1 indicates that

we exploit information of one leading month; hence, we nowcast two months away (h = 2).

We use the exponential Almon lag with two parameters defined in (2) for the lag polynomial

function. The quarterly U.S. output is obtained from a FRED-QD dataset (for detail, see

M. McCracken and Ng (2020)). As U.S. real output is available in level in the dataset, we

compute the growth rate in percentage, by {ln(GDP)t↗ln(GDP)t↓1)}↘100. We also include

the lags of the growth rate in the regression. The number of lags of the dependent variable

is chosen by BIC, before we apply MIDAS regression. BIC selects one lag in the long period

and three lags in the short period.

To estimate the monthly factors, we utilize the FRED-MD dataset15 (for detail, see

M. W. McCracken and Ng (2016)). We consider 74 macroeconomic variables available for the

entire period and exclude all financial variables. Using PCA, we extract two common factors

15We use the ‘current’ version downloaded on October 3rd, 2023.
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in both periods. The information criterion proposed by Bai and Ng (2002) (particularly, ICp)

chooses eight factors in the long period and five factors in the short period. Although the

information criterion chooses more than 2 factors, the two factors we extract explain more

than 60% of the variability explained by all the factors chosen by the information criterion

proposed by Bai and Ng (2002).

Our primary goal is to verify the existence of bias in the estimators. Instead of focusing

solely on the forecasting performance of the factor-MIDAS regression model, we aim to

examine the behaviour of the estimators, particularly their 90% confidence interval. We

present three sets of confidence intervals, one based on asymptotic theory and the other two

based on the bootstrap method. We use two di”erent bootstrap methods for resampling the

idiosyncratic error terms in the factor model: wild bootstrap and AR-sieve + CSD bootstrap,

described in Section 3. We also rotate the bootstrap estimators, ε̃⇐
1
, with the rotation matrix

H⇐ as in GP (2014) and Gonçalves and Perron (2020).

In Table 4, we present the confidence interval for the point estimates in the long period,

1984 Q1 - 2022 Q4 for each nowcasting horizon, h = 2, 1, and 0. We also report the estimate

associated with each parameter on the top of the three confidence intervals. We can find

that there exists a bias in the estimators associated with the factors. For example, the

point estimate associated with the first factor for horizon h = 2 is 2.54. The confidence

interval of this estimate is centered around 2.54, but the bootstrap interval shifts to the

right, suggesting a negative bias. The results are similar for the other horizons, h = 1 and

0. Although the second factor is not significant at h = 2, we can confirm that there exists a

bias in the estimator associated with the second factor at h = 1 and h = 0. When h = 1, the

result implies a negative bias, whereas when h = 0, there exists a positive bias, shifting the

interval to the left. Comparing the two bootstrap methods, there is a small change in the
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Table 4: Estimates in the long period (1984 Q1 - 2022 Q4)

h = 2 h = 1 h = 0

0.90 0.83 0.99

constant

Asymptotic 0.67 1.01 0.67 0.99 0.78 1.21

WB 0.71 0.98 0.69 0.95 0.73 1.28

AR sieve+CSD 0.71 0.98 0.69 0.94 0.75 1.26

2.54 3.79 1.87

first factor

Asymptotic 1.64 3.44 2.97 4.61 0.31 3.44

WB 2.01 3.56 3.29 4.72 0.91 3.93

AR sieve+CSD 2.13 3.54 3.34 4.80 0.90 3.39

0.04 0.36 -0.95

second
factor

Asymptotic -0.22 0.30 0.08 0.65 -1.47 -0.43

WB -0.17 0.37 0.14 0.75 -1.62 -0.01

AR sieve+CSD -0.12 0.38 0.16 0.77 -1.63 -0.21

-0.30 -0.30 -0.58

yt↓1

Asymptotic -0.54 -0.06 -0.52 -0.09 -0.87 -0.28

WB -0.49 -0.12 -0.44 -0.14 -1.25 -0.26

AR sieve+CSD -0.49 -0.12 -0.43 -0.14 -1.22 -0.25

The interval based on the asymptotic theory is obtained by adding and subtracting 1.645
times the heteroskedasticity robust standard errors. The confidence intervals based on
bootstrap methods are obtained with equal-tailed bootstrap intervals with a bootstrap
number 4999. WB indicates that we use wild bootstrap and AR sieve + CSD indicates
that we use the bootstrap algorithm described in Section 3.

bootstrap confidence intervals of the estimators associated with the two factors. However,

the di”erence is not huge, indicating that the serial and cross-sectional dependence in this

example may be small.

6 Conclusion

In this paper, we derive the asymptotic distribution of the estimators in the factor-augmented

MIDAS regression models. We find that there exists an asymptotic bias arising from the fact
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that the factors are latent and must be estimated. We show that the bias depends on the

serial dependence as well as the cross-sectional dependence of the idiosyncratic error term

in the factor model, because MIDAS temporally aggregates the factors and their lags. We

propose two inference methods that account for this bias: an analytical bias estimator based

on the bias formula derived and a bootstrap method. Both inference methods are robust to

serial and cross-sectional dependence.

Although our simulation results support the theoretical findings, the bootstrap method

more e”ectively corrects the size distortion in the coverage rates, while the plug-in method

outperforms the bootstrap method in estimating the size of the bias, especially in small

samples. We further apply the factor-MIDAS regression model to nowcast quarterly U.S.

GDP growth rate using monthly macroeconomic factors. Our empirical results indicate that

there exists a bias in the estimates associated with the estimated factors.

Our results can be extended to the context of forecasting, such as to construct forecast

intervals, similar to Gonçalves, Perron, and Djogbenou (2017), where they construct it in

the context of the factor-augmented regression models without mixed frequency datasets.

By letting ŷT+1 = g(F̃T , ϱ̃) be the forecast of yT+1 based on information up to time T , we

can decompose the forecast error as

ŷT+1 ↗ yT+1 = ↗ϖT+1 +
1→
T

ςg(F̃t,ϱ)

ςϱ→

→
T (ϱ̃↗ ϱ) +

1→
N
ε→H↓1

→
N(F̃t(ϑ)↗HFt(ϑ)) + op(1).

This underscores the importance of the asymptotic distribution of the estimators derived

in this paper in constructing to construct the forecast interval. We leave this for future

research.

An interesting extension involves the use of machine-learning techniques. Machine learn-

ing techniques are popularly used to handle high-dimensional data. Along the same lines,
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Babii, Ghysels, and Striaukas (2022) propose a machine learning regression by applying the

sparse-group LASSO technique for mixed-frequency data.
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Djogbenou, A., Gonçalves, S., & Perron, B. (2015). Bootstrap inference in regressions

with estimated factors and serial correlation. Journal of Time Series Analysis , 36 (3),

32



481–502.

Ferrara, L., & Marsilli, C. (2019). Nowcasting global economic growth: A factor-augmented

mixed-frequency approach. The World Economy , 42 (3), 846-875.

Foroni, C., Marcellino, M., & Schumacher, C. (2015). Unrestricted mixed data sampling

(midas): Midas regressions with unrestricted lag polynomials. Journal of the Royal

Statistical Society Series A: Statistics in Society , 178 (1), 57–82.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2004, 06). The midas touch: mixed data

sampling regression.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2005). There is a risk-return trade-o” after

all. Journal of Financial Economics , 76 (3), 509–548.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2006). Predicting volatility: getting the most

out of return data sampled at di”erent frequencies. Journal of Econometrics , 131 (1-2),

59–95.

Ghysels, E., Sinko, A., & Valkanov, R. (2007, 02). Midas regressions: Further results and

new directions. Econometric Reviews , 26 , 53-90.

Ghysels, E., Valkanov, R. I., & Serrano, A. R. (2009). Multi-period forecasts of volatility:

Direct, iterated, and mixed-data approaches. In Efa 2009 bergen meetings paper.
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Online Appendix for “Inference for Factor-MIDAS

Regression Models”

Abstract

Appendix A presents the primitive assumptions necessary for proving the results
in the main text. Appendices B and D provide the proofs of the results in the main
text. Appendix C presents the bootstrap procedure for the factor-MIDAS regression
model. Appendix E contains additional simulation results. Finally, in Appendix F, we
include an additional empirical result, which is omitted from the main text.
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A Primitive assumptions

This section delivers the primitive assumption for asymptotic theory. The factor-augmented

MIDAS regression involves two frequencies, thus we use two time indices: th = 1, . . . , TH

denotes the high-frequency time index and t = 1, . . . , T denotes the low-frequency time

index. Particularly, we use a subscript h to denote high-frequency time index (e.g. sh also

denotes the high-frequency time index).

Assumption A.1 (Factors and Factor Loadings)

(a) fth are stationary with E →fth→
4 ↑ M and

1
TH

∑TH

th=1 fthf
→
th

p↓↔ !f > 0, where !f is a

non-random r ↗ r matrix.

(b) The factor loadings ωi are either deterministic such that →ωi→ ↑ M , or stochastic such

that E →ωi→4 ↑ M . In either case, ”→”/N
p↓↔ !! > 0, where !! is a non-random

matrix.

(c) The eigenvalues of the r ↗ r matrix (!!!f ) are distinct.

(d) f →f/TH = Ir and ”→” is a diagonal matrix with distinct entries, where f = (f1, . . . , fTH
)→.

Assumption A.2 (Time and Cross Section Dependence and Heteroskedasticity)

(a) E(ei,th) = 0, E|ei,th |8 ↑ M .

(b) E(ei,thej,sh) = εij,thsh , |εij,thsh | ↑ ε̄ij for all (th, sh) and |εij,thsh | ↑ ϑthsh for all (i, j)

such that
1
N

∑N
i,j=1 ε̄ij ↑ M ,

1
TH

∑TH

th,sh=1 ϑthsh ↑ M , and
1

NTH

∑
th,sh,i,j

|εij,thsh | ↑ M .

(c) For every (th, sh), E
∣∣N↑1/2

∑N
i=1(ei,thei,sh ↓ E(ei,thei,sh))

∣∣4 ↑ M .
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(d) E(ei,thej,th) = εij and E(ei,thej,th↑k) = εij,k for all t and k.

Assumption A.3 (Moments and Weak Dependence Among {fth}, {ωi} and {ei,th})

(a) E

(
1
N

∑N
i=1

∥∥∥ 1↓
TH

∑TH

th=1 fthei,th

∥∥∥
2
)

↑ M , where E(fthei,th) = 0 for all (i, th).

(b) For each th, E
∥∥∥ 1↓

THN

∑TH

sh=1

∑N
i=1 fsh(ei,thei,sh ↓ E(ei,thei,sh))

∥∥∥
2

↑ M .

(c) E
∥∥∥ 1↓

THN

∑TH

th=1 fthe
→
th
”
∥∥∥
2

↑ M , where E(fthω
→
iei,th) = 0 for all (i, th).

(d) E

(
1
TH

∑TH

th=1

∥∥∥ 1↓
N

∑N
i=1 ωiei,th

∥∥∥
2
)

↑ M , where E(ωiei,th) = 0 for all (i, th).

(e) As N ↔ ↘,
1
N

∑N
i=1

∑N
j=1 ωiω→

jei,thej,th↓#
p↓↔ 0 and # ≃ limN↔↗ V ar

(
1↓
N

∑N
i=1 ωiei,th

)
.

Assumption A.4 (Serial Dependence between {fth}, {ωi} and {ei,th})

(a)
1
TH

∑TH

th=1 fthf
→
th↑k

p↓↔ !f,k, where !f,k is a non-random r ↗ r matrix.

(b) For each th and all k, E
∥∥∥ 1↓

THN

∑TH

sh=1

∑N
i=1 fsh(ei,thei,sh↑k ↓ E(ei,thei,sh↑k))

∥∥∥
2

↑ M .

(c) E
∥∥∥ 1↓

NTH

∑TH

th=1 fthe
→
th↑k”

∥∥∥
2

↑ M , where E(fthω
→
iei,th↑k) = 0 for all (i, th) and all k.

(d) As N ↔ ↘,
1
N

∑N
i=1

∑N
j=1 ωiω→

jei,thej,th↑k↓#k
p↓↔ 0 and #k ≃ limN↔↗ Cov

(
!→et

h↓
N
,
!→et

h
↑k↓

N

)
.

Assumption A.5 (Weak Dependence Between Idiosyncratic Errors and Regression Errors)

(a) For each t, E
∣∣∣ 1↓

TN

∑T
s=1

∑N
i=1 ϖs(ei,t↑j/mei,s↑j/m ↓ E(ei,t↑j/mei,s↑j/m))

∣∣∣
2

↑ M for j =

0, . . . ,m↓ 1.

(b) E
∥∥∥ 1↓

TN

∑T
t=1

∑N
i=1 ωiei,t↑j/mϖt

∥∥∥
2

↑ M , where E(ωiei,t↑j/mϖt) = 0 for all (i, t) and

j = 0, . . . ,m↓ 1.
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Assumption A.6 (Moments and CLT for the Score Vector)

(a) E(ϖt) = 0 and E |ϖt|2 < M .

(b) E →gω,t→4 ↑ M and
1
T

∑T
t=1 gω,tg

→
ω,t

p↓↔ ! > 0 where gω,t = ϱg(Ft,ς)/ϱς.

(c) As T ↔ ↘,
1↓
T

∑T
t=1 gω,tϖt

d↓↔ N(0,$), where E
∥∥∥ 1↓

T

∑T
t=1 gω,tϖt

∥∥∥
2

< M

and $ ≃ limT↔↗ V ar
(

1↓
T

∑T
t=1 gω,tϖt

)
> 0.

Assumption A.1 are standard assumptions on the factors and the factor loadings in the

factor analysis. Additionally, we assume that the factors are stationary. This is to allow

!f = plim 1
TH

∑TH

th=1 fthf
→
th
= plim 1

T

∑T
t=1 ft↑j/mf →

t↑j/m, for all j. Assumption A.1-(d) is one

of the identifying restrictions from Bai and Ng (2013). By imposing this assumption, the

rotation matrix H0 is a diagonal matrix of ±1, where the sign is determined by f̃ →f/TH .

However, since the true factors are unknown, we still do not know the sign of the rotation

matrix.

Assumption A.2 and Assumption A.3 can be found equivalently in Gonçalves and Per-

ron (2014) (henceforth, GP (2014)) (their Assumptions 2 and 3, respectively). In Assump-

tion A.2, we allow weak cross-sectional and serial dependence in the idiosyncratic error terms.

In Assumption A.3, we impose some moment condition between the factors, idiosyncratic

error terms, and the factor loadings. We also allow some weak dependence among them.

Due to the MIDAS structure, where the lags of the factors are used, we also allow some serial

dependence between them in Assumption A.4. This set of assumptions is new in the context

of the factor-augmented regression models. In particular, Assumption A.4-(d) allows for the

serial dependence in the scaled average over cross-sectional dimension of factor loadings and

idiosyncratic error term in the factor model.
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We impose some weak dependence between idiosyncratic error terms and the regression

errors in Assumption A.5. This Assumption is equivalent to the Assumption 4 in GP (2014).

Assumption A.6 imposes some moment condition on {ϖt} and the score vector gω,t. Assump-

tion A.6-(b) requires that we can apply a law of large numbers on {gω,tg→ω,t}. By introducing

Assumption A.6-(c), we can apply a central limit theorem on {gω,tϖt}. Similar assumptions

to Assumption A.5 and A.6 can be found in GP (2014).

B Proof of results in Section 2

In this section, we prove the asymptotic distribution of NLS estimators in Theorem 2.1 and

Theorem 2.2, the consistency of the variance-covariance of the cross-sectional average of the

factor loadings and idiosyncratic error term across time for the plug-in bias estimator. To

prove the asymptotic distribution, we use the following lemmas. The proof for the following

lemmas Lemma B.1 to Lemma B.3 can be found at the end of proof of Theorem 2.1.

Lemma B.1 1
T

∑T
t=1 ϖt(F̃t(φ)↓HFt(φ)) = op(1).

Lemma B.2 For j, l = 0, . . . ,m↓ 1, if
⇐
T/N ↔ c, where 0 ↑ c < ↘,

(a)
1↓
T

∑T
t=1(f̃t↑j/m ↓HFt↑j/m)(f̃t↑j/m ↓Hft↑j/m)→ = cV ↑1H#HV ↑1 + op(1),

(b)
1↓
T

∑T
t=1(f̃t↑j/m ↓Hft↑j/m)(f̃t↑l/m ↓Hft↑l/m)→ = cV ↑1H#j↑lHV ↑1 + op(1) for j ⇒= l,

(c)
1↓
T

∑T
t=1 Hft↑j/m(f̃t↑j/m ↓Hft↑j/m)→ = cH#Q→V ↑2 + op(1),

(d)
1↓
T

∑T
t=1 Hft↑l/m(f̃t↑j/m ↓Hft↑j/m)→ = cQj↑l#Q→V ↑2 + op(1) for j ⇒= l.

Lemma B.3 If
⇐
T/N ↔ c, where 0 ↑ c < ↘,
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(a)
1↓
T

∑T
t=1(F̃t(φ)↓HFt(φ))(F̃t(φ)↓HFt(φ))→

= cV ↑1Q
{∑K

k=1 wk(φ)#wk(φ) +
∑K

k=1

∑K
l ↘=k wk(φ)#k↑lwl(φ)

}
Q→V ↑1 + op(1),

(b)
1↓
T

∑T
t=1(F̃t(φ)↓HFt(φ))(HFt(φ))→

= c
{∑K

k=1 w
2
k(φ)H +

∑K
k=1

∑K
l ↘=k wk(φ)Qk↑lwl(φ)

}
#Q→V ↑2 + op(1).

Note that we write Ft(φ) =
∑K

k=1 wk(φ)ft↑k/m, where wk(φ) ≃ diag(wk,1(φ1), . . . , wk,r(φr))

is a r ↗ r diagonal matrix. We also define ↼NTH
= min(

⇐
N,

⇐
TH). We first prove Theorem

2.1 and then we prove Lemmas B.1 - B.3.

Proof of Theorem 2.1. As the NLS estimators ς̃ maximizes the objective function

Q̃T (ς) = ↓ 1
T

∑T
t=1[yt ↓ g(F̃t,ς)]2, we have

⇐
T (ς̃↓ ς) = ↓

[ 1
T

T∑

t=1

H(F̃t,ςT )
]↑1 1⇐

T

T∑

t=1

s(F̃t,ς), (1)

where ςT is the intermediate between ς̃ and ς and H(F̃t,ς) is a hessian matrix and s(F̃t,ς)

is a score vector. For deriving the asymptotic distribution, we analyse the convergence of

each term. Let gω(·) = ϱg(·)/ϱς. We write the term with a score vector as follows.

1⇐
T

T∑

t=1

s(F̃t,ς) = 2
1⇐
T

T∑

t=1

[ϖt + ↽→H↑1(HFt(φ)↓ F̃t(φ))]gω(F̃t,ς)

= 2
1⇐
T

T∑

t=1

[ϖt + ↽→H↑1(HFt(φ)↓ F̃t(φ))](%0gω(Ft,ς) + Pt),

where where %0 = diag(1, H0, Ip) and H0 = plimH and Pt is a (1 + r + p) ↗ 1 vector such

that

Pt =





0

F̃t(φ)↓HFt(φ)
(

εF̃t(ϑ)
εϑ H↑1 ↓ εFt(ϑ)

εϑ

)→
↽




,
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with εF̃t(ϑ)→

εϑ = diag
εF̃1,t(ϑ1)

εϑ1
, . . . , εF̃r,t(ϑr)

εϑr


is a r ↗ r block-diagonal matrix. k-th block is

ϱF̃k,t(φk)/ϱφk, which is a pj ↗ 1 column vector, for j = 1, . . . , r. Under Assumption A.6 and

Lemma B.1, we have 1↓
T

∑T
t=1 ϖtgω(F̃t,ς)

d↓↔ N(0,%0$%→
0). The remaining term drives the

bias in Theorem 2.1. Note that the bias exists in the slope coe&cients ↽1 and the weighting

parameters φ. With respect to ↽1, the remaining term is as follows.

1⇐
T

T∑

t=1

F̃t(φ)[HFt(φ)↓ F̃t(φ)]
→H↑1→↽1

= ↓


1⇐
T

T∑

t=1

(F̃t(φ)↓HFt(φ))(F̃t(φ)↓HFt(φ))
→ +

1⇐
T

T∑

t=1

HFt(φ)(F̃t(φ)↓HFt(φ))
→


H↑1→↽1

= ↓c


V ↑1H


K∑

k=1

wk(φ)#wk(φ) +
K∑

k=1

K∑

l ↘=k

wk(φ)#k↑lwl(φ)


HV ↑1

+


K∑

k=1

wk(φ)Hwk(φ) +
K∑

k=1

K∑

l ↘=k

wk(φ)Qk↑lwl(φ)


#Q→V ↑2


plim(↽̃1)

= ↓cBϖ1 + op(1), (2)

where plim(↽̃1) = H↑1→↽1. The second equality follows by applying Lemma B.3. Similarly,

with respect to φ, we have

1⇐
T

T∑

t=1

ϱF̃t(φ)→

ϱφ
H↑1→↽1↽

→
1H

↑1[HFt(φ)↓ F̃t(φ)]

= ↓H↑1→↽1 ⇑
1⇐
T

T∑

t=1

F̃t,ϑ(φ)[F̃t(φ)↓HFt(φ)]
→H↑1→↽1

= ↓c plim(↽̃1) ⇑

V ↑1H


K∑

k=1

ϱwk(φ)

ϱφ
#wk(φ) +

K∑

k=1

K∑

l ↘=k

ϱwk(φ)

ϱφ
#k↑lwl(φ)


HV ↑1

+


K∑

k=1

ϱwk(φ)

ϱφ
Hwk(φ) +

K∑

k=1

K∑

l ↘=k

ϱwk(φ)

ϱφ
Qk↑lwl(φ)


#Q→V ↑2


plim(↽̃1)

= ↓cBϑ + op(1), (3)
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where F̃t,ϑ(φ) =
(

εF̃1,t(ϑ1)
εϑ1

, . . . , εF̃r,t(ϑr)
ϑr

)→
. To apply the lemmas, we use the Hadamard product

such that (A ⇑ B)ij = AijBij. By applying Hadamard product, we have εF̃t(ϑ)→

εϑ H↑1→↽ =

H↑1→↽ ⇑ F̃t,ϑ(φ) to obtain the first equality. Then, we apply Lemma B.3 for the second

equality. Finally, we have 1↓
T

∑T
t=1 s(F̃t,ς)

d↓↔ N(↓cBω,%0$%→
0). Next, we derive the term

with Hessian matrix. First, we rewrite the first term in (1) as follows.

1

T

T∑

t=1

H(F̃t,ς) =
1

T

T∑

t=1

[
ϖt + ↽→H↑1(HFt(φ)↓ F̃t(φ))

] ϱ2g(F̃t,ς)

ϱςϱς→ +
1

T

T∑

t=1

ϱg(F̃t,ς)

ϱς

ϱg(F̃t,ς)

ϱς→ .

Under Assumption A.6 and Lemma B.1, 1
T

∑T
t=1 ϖt

ε2g(F̃t,ω)
εωεω→ = op(1). We can also show that

↓ 1
T

∑T
t=1 ↽

→H↑1(F̃t(φ)↓HFt(φ))
ε2g(F̃t,ω)
εωεω→ = op(1). Finally, for the second term, we have

1

T

T∑

t=1

ϱg(F̃t,ς)

ϱς

ϱg(F̃t,ς)

ϱς→ = %0!%
→
0 + op(1) (4)

where ! ≃ E
[
εg(Ft,ω)

εω
εg(Ft,ω)

εω→

]
by replacing εg(F̃t,ω)

εω with %0
εg(Ft,ω)

εω +Pt. Then, by Lemma B.2,

we have 1
T

∑T
t=1 gω(Ft,ς)P →

t = op(1) and
1
T

∑T
t=1 PtP →

t = op(1). By plugging the terms, (2),

(3), and (4) into (1), we have
⇐
T (ς̃↓ ς)

d↓↔ N(↓c(%0!%→
0)

↑1Bω,%
→↑1
0 !↑1$!↑1%↑1

0 ).

Next, we prove Lemma B.1-B.3, which we used to prove Theorem 2.1. We can obtain

Lemma B.1 by applying the arguments in the proof of Lemma 1.1 in GP (2014). The proofs

for (a) and (c) in Lemma B.2 are also similar to the proof of Lemma A.2 - (a) and (b) in GP

(2014). Therefore, here, we show the proof for (b) and (d) in Lemma B.2. While we employ

similar arguments to those in GP (2014) to prove (b) and (d), our proof relies on a new

set of assumption, specifically Assumption A.4. This highlights the importance to account

for serial dependence in the idiosyncratic error term in our framework, representing a novel

contribution to the literature.

Proof of Lemma B.2 - (b). First, we use the identity for the factor estima-
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tion error in GP (2014) such that f̃th ↓ Hfth = Ṽ ↑1 (A1,th + A2,th + A3,th + A4,th), where

A1,th = 1
TH

∑TH

sh=1 f̃sh⇀shth , A2,th = 1
TH

∑TH

sh
f̃sh⇁shth , A3,th = 1

TH

∑TH

sh
f̃shηshth , and A4,th =

1
TH

∑TH

sh
f̃shξshth . Each term inAi,th for i = 1, 2, 3, 4 denotes the following: ⇀shth = E

(
1
N

∑N
i=1 ei,shei,th

)
,

⇁shth = 1
N

∑N
i=1(ei,shei,th ↓ E(ei,shei,th)), ηshth = f →

sh

!→et
h

N , and ξshth = f →
th

!→es
h

N = ηthsh . Under

this identity and using the low-frequency notation, we have

1⇐
T

T∑

t=1

(f̃t↑j/m ↓Hft↑j/m)(f̃t↑l/m ↓Hft↑l/m)
→

=
1⇐
T

T∑

t=1

[
Ṽ ↑1(A1,t↑j/m + A2,t↑j/m + A3,t↑j/m + A4,t↑j/m)

↗(A1,t↑l/m + A2,t↑l/m + A3,t↑l/m + A4,t↑l/m)
→Ṽ ↑1

]
,

for j = 1, . . . ,m↓ 1. We analyse the convergence limit of each term, respectively. The proof

is similar to the proof of Lemma A.2 - (a) in GP (2014). By applying the Cauchy-Schwarz in-

equality, we have
∥∥∥ 1
T

∑T
t=1 A1,t↑j/mA→

1,t↑l/m

∥∥∥ ↑
(

1
T

∑T
t=1→A1,t↑j/m→2

)1/2 (
1
T

∑T
t=1→A1,t↑l/m→2

)1/2

=

Op(1/T ), by Assumptions A.1 and A.2. This implies 1↓
T

∑T
t=1 A1,t↑j/mA→

1,t↑l/m = op(1). We

can also show that
∥∥∥ 1
T

∑T
t=1 A2,t↑j/mA→

2,t↑l/m

∥∥∥ ↑
(

1
T

∑T
t=1

∥∥A2,t↑j/m

∥∥2
)1/2 (

1
T

∑T
t=1

∥∥A2,t↑l/m

∥∥2
)1/2

=

Op(N↑1↼↑2
NTH

) by Cauchy-Schwarz. We also use 1
T

∑T
t=1→A2,t↑j/m→2 = Op(N↑1↼↑2

NTH
) by As-

sumption A.2 and 1
TH

∑TH

sh=1 →f̃s ↓ Hfs→2 = Op(↼
↑2
NTH

) in Bai and Ng (2006). Again, this

implies 1↓
T

∑T
t=1 A2,t↑j/mA→

2,t↑l/m = op(1). Similarly, we can show all the terms are neg-

ligible, except the term 1
T

∑T
t=1 A3,t↑j/mA→

3,t↑l/m. In fact, this term is Op(1/N), which is

non-negligible when it is multiplied by
⇐
T under our assumption,

⇐
T/N ↔ c. To see this,

we first rewrite the term as follows.

1

T

T∑

t=1

A3,t↑j/mA
→
3,t↑l/m =

1

T

T∑

t=1


1

TH

TH∑

t=1

(f̃s ↓Hfs +Hfs)ηs,t↑j/m


1

TH

TH∑

s=1

(f̃s ↓Hfs +Hfs)ηs,t↑l/m

→

= b33.1 + b33.2 + b→33.2 + b33.3
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The first term b33.1 is bounded by
(

1
TH

∑TH

s=1→f̃s ↓Hfs→2
)(

1
TTH

∑T
t=1

∑TH

s=1 |ηs,t↑j/mηs,t↑l/m|
)

by applying Cauchy-Schwarz inequality. This isOp(N↑1↼↑2
NTH

) by 1
TTH

∑T
t=1

∑TH

sh=1 |ηsh,t↑j/m|2 =

Op(N↑1) under Assumption A.3. Similarly, the second term is bounded by Cauchy-Schwarz

such that b33.2 ↑
(

1
TH

∑TH

s=1

∥∥∥Hfs(f̃s ↓Hfs)
∥∥∥
)(

1
TTH

∑T
t=1

∑TH

s=1 |ηs,t↑j/mηs,t↑l/m|
)
= Op(N↑1↼↑1

NTH
).

Then, the final term is b33.3 = H
(

f →f
TH

) [
1
T

∑T
t=1

(
!→et↑j/m

N

)(
e→
t↑l/m

!

N

)](
f →f
TH

)
H → = Op(N↑1)

by Assumption A.3. Thus,

⇐
Tb33.3 =

⇐
T

N
H


1

T

T∑

t=1

(
”→et↑j/m⇐

N

)
e→t↑l/m”⇐

N


H = cH#j↑lH + op(1),

where we use f →f
TH

= Ir by Assumptions A.1-(d) and A.4-(d). Finally, we have 1↓
T

∑T
t=1(f̃t↑j/m↓

Hft↑j/m)(f̃t↑l/m ↓Hf (m)
t↑l/m)

→ = cV ↑1H#j↑lHV ↑1 + op(1).

Proof of Lemma B.2 - (d). The proof is similar to the proof of Lemma A.2 - (b) in

GP (2014). By using the identity we use in the proof of B.2-(b), we have

1⇐
T

T∑

t=1

Hft↑l/m(f̃t↑j/m ↓Hft↑j/m)
→ = H

1⇐
T

T∑

t=1

ft↑l/m(A1,t↑j/m + A2,t↑j/m + A3,t↑j/m + A4,t↑j/m)
→Ṽ ↑1

≃
⇐
TH(df1 + df2 + df3 + df4)Ṽ

↑1.

We show the convergence limit for dfi, for i = 1, 2, 3, 4. We can show that all the terms except

df4 is negligible. For example, df1 = Op(↼
↑1
NTH

T↑1/2)+Op(T
↑1
H ). To show this, we first rewrite

df1 as
1
T

∑T
t=1 ft↑l/m

(
1
TH

∑TH

s=1(f̃s ↓Hfs)→⇀s,t↑j/m

)
+ 1

T

∑T
t=1 ft↑l/m

(
1
TH

∑TH

s=1 f
→
s⇀s,t↑j/m

)
H →.

The first term of df1 is Op(↼
↑1
NTH

T↑1/2) by applying Assumptions A.1-A.2 and 1
TH

∑TH

sh=1 →f̃s↓

Hfs→2 = Op(↼
↑2
NTH

). The second term is Op(T
↑1
H ) by Cauchy-Schwarz inequality and Assump-

tions A.1 and A.2. We can also show that →df2→ = Op((TN)↑1/2) by showing

1
TH

∑TH

s=1

∥∥∥ 1
T

∑T
t=1 ft↑l/m⇁s,t↑j/m

∥∥∥
2

= Op((TN)↑1) under Assumption A.4-(b). The third term

is also bounded by Cauchy-Schwarz inequality such that →df3→ = Op((NT )↑1/2) and by ap-
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plying Assumption A.4-(c). Finally, we decompose the last term into two parts as follows.

df4 =
1

T

T∑

t=1

ft↑l/m


1

TH

TH∑

s=1

(f̃s ↓Hfs)
→ξs,t↑j/m


+

1

T

T∑

t=1

ft↑l/m


1

TH

TH∑

s=1

f →
sξs,t↑j/m


H →

≃ df4.1 + df4.2.

By rearranging the second term, we have df4.2 =
1↓

THN

(
1
T

∑T
s=1 ft↑l/mf →

t↑j/m

)(
1↓

THN

∑TH

s=1 ”
→esf →

s

)
=

Op(1/(
⇐
THN)) by Assumptions A.4-(1) and A.3-(c). We can also rearrange the terms in

the first term and write it as follows.

df4.1 =
1

T

T∑

t=1

ft↑l/m


1

TH

TH∑

s=1

(f̃s ↓Hfs)
→
(
f →
t↑j/m

”→es
N

)

=


1

T

T∑

t=1

ft↑l/mf
→
t↑j/m


1

TH

TH∑

s=1

”→es
N

(f̃s ↓Hfs)
→


.

This is Op(1/N) under our assumptions. By using 1
TH

∑TH

s=1
!→es
N (f̃s ↓ Hfs)→ = 1

N (# +

op(1))Q→V ↑1, from the proof in GP (2014), we have

⇐
THdf4.1 = H


1

T

T∑

t=1

ft↑l/mf
→
t↑j/m

⇐
T

N
(#+ op(1))Q

→V ↑1


= cQj↑l#Q

→V ↑1 + op(1)

Thus,
⇐
Tdf4.1Ṽ ↑1 = cQj↑l#Q→V ↑2+op(1), whereQj↑l =

1
T

∑T
t=1 f̃t↑j/mft↑l/m = 1

TH

∑TH

t=1 f̃tft↑(j↑l).
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Proof of Lemma B.3 - (a). We write the equation as follows.

1⇐
T

T∑

t=1

(F̃t(φ)↓ Ft(φ))(F̃t(φ)↓HFt(φ))
→

=
1⇐
T


K∑

j=1

wj(φ)(f̃t↑j/m ↓Hft↑j/m)


K∑

j=1

wj(φ)(f̃t↑j/m ↓Hft↑j/m)

→

=
K∑

j=1

wj(φ)


1⇐
T

T∑

t=1

(f̃t↑j/m ↓Hft↑j/m)(f̃t↑j/m ↓Hft↑j/m)
→


wj(φ)

+
K∑

j=1

K∑

l ↘=j

wj(φ)


1⇐
T

T∑

t=1

(f̃t↑j/m ↓Hft↑j/m)(f̃t↑l/m ↓Hft↑l/m)
→


wl(φ)

= cV ↑1Q


K∑

j=1

w2
j (φ)#+

K∑

j=1

K∑

l ↘=j

wj(φ)#j↑lwl(φ)


Q→V ↑1 + op(1).

By applying Lemmas B.2-(a) and (b), the result follows immediately.

Proof of Lemma B.3 - (b). Similar to previous proof, we rewrite the equation as

follows.

1⇐
T

T∑

t=1

HFt(φ)(F̃t(φ)↓HFt(φ))
→

=
1⇐
T


K∑

j=1

wj(φ)Hft↑j/m)


K∑

j=1

wj(φ)(f̃t↑j/m ↓Hft↑j/m)

→

=
K∑

j=1

wj(φ)


1⇐
T

T∑

t=1

Hft↑j/m(f̃t↑j/m ↓Hft↑j/m)
→


wj(φ)

+
K∑

j=1

K∑

l ↘=j

wj(φ)


1⇐
T

T∑

t=1

Hft↑l/m(f̃t↑j/m ↓Hft↑j/m)
→


wl(φ)

= c


K∑

j=1

w2
j (φ)H +

K∑

j=1

K∑

l ↘=j

wj(φ)Qj↑lwl(φ)


#Q→V ↑2 + op(1).

By applying Lemmas B.2-(c) and (d), the result follows.

Next, we prove Theorem 2.2 and Proposition 2.1. To prove Theorem 2.2, we first prove the

case when there is no cross-sectional dependence (only serial correlation) in the idiosyncratic

12



term in the factor model, and then we prove when the cross-sectional dependence is allowed.

Proof of Theorem 2.2.

If the idiosyncratic terms are serially correlated, but not cross-sectionally correlated, note

that #k = limN↔↗
1
N

∑N
i=1 ωiω→

iE(ei,thei,th↑k). Recall that the estimator for #k under serial

dependence without cross-sectional dependence is #̂k =
1

N(TH↑k)

∑TH

th=k+1

∑N
i=1 ω̃iω̃→

iẽi,th ẽi,th↑k.

To show that #̂k↓H↑1→
0 #kH

↑1
0 ↔ 0, we can use the arguments in the proof of Theorem 6 in Bai

(2003). In fact, we can use the fact that ẽi,th = ei,th +Op(↼
↑1
NTH

) and ω̃i = H↑1→ωi+Op(↼
↑1
NTH

),

and rewrite #̂k as follows.

#̂k = H↑1→ 1

N(TH ↓ k)

TH∑

th=k+1

N∑

i=1

ωiω
→
iei,thei,th↑kH

↑1 + op(1).

Since we have 1
TH↑k

∑TH

th=k+1 ei,thei,th↑k ↔ E(ei,thei,th↑k) and H ↔ H0, we can show that

#̂k ↓H↑1→
0 #kH

↑1
0

p↓↔ 0.

Next, we prove the case when the idiosyncratic terms are serially and cross-setionally

correlated, we can use the arguments in the proof of Theorem 4 in Bai and Ng (2006). Un-

der Assumption A.2 - (d), we have εij,k = E(ei,thej,th↑k). Let ε̃ij,k =
1

TH↑k

∑TH

th=k+1 ẽi,th ẽi,th↑k

and #n,k = 1
n

∑n
i=1

∑n
j=1 εij,kωiω→

j. By the definition, #k = limn↔↗ #n,k. Let #̄n,k =

1
n

∑n
i=1

∑n
j=1 ε̃ij,kωiω→

j. Then, we can write

#̂k ↓H↑1→#kH
↑1 = #̂k ↓H↑1→#̄n,kH

↑1 +H↑1→(#̄n,k ↓ #n,k)H
↑1 +H↑1→(#n,k ↓ #k)H

↑1.

Since #k is the limit of #n,k, we have #n,k ↓ #k ↔ 0. The remaining parts to show are

#̄n,k ↓ #n,k
p↓↔ 0 if n/N ↔ 0 and n/TH ↔ 0 and #̂k ↓ H↑1→#̄n,kH↑1 p↓↔ 0. We first rewrite

13



#̄n,k ↓ #n,k as follows.

#̄n,k ↓ #n,k =
1

n

n∑

i=1

n∑

j=1

(ε̃ij,k ↓ εij,k)ωiω
→
j

=
1

n

n∑

i=1

n∑

j=1

1

TH ↓ k

TH∑

th=k+1

(ei,thej,th↑k ↓ εij,k)ωiω
→
j

↓ 1

n

n∑

i=1

n∑

j=1

1

TH ↓ k

TH∑

th=k+1

ei,th(cj,th↑k ↓ c̃j,th↑k)ωiω
→
j

↓ 1

n

n∑

i=1

n∑

j=1

1

TH ↓ k

TH∑

th=k+1

ej,th↑k(ci,th ↓ c̃i,th)ωiω
→
j

+
1

n

n∑

i=1

n∑

j=1

1

TH ↓ k

TH∑

th=k+1

(ci,th ↓ c̃i,th)(cj,th↑k ↓ c̃j,th↑k)ωiω
→
j

= I + II + III + IV ,

where we obtain the second equality by using the decomposition such that ẽi,th ẽj,th↑k =

ei,thej,th↑k ↓ ei,th(cj,th↑k ↓ c̃j,th↑k)↓ ej,th↑k(ci,th ↓ c̃i,th) + (ci,th ↓ c̃i,th)(cj,th↑k ↓ c̃j,th↑k), where

c̃i,th = ω̃→
if̃th and ci,th = ω→

ifth . We can show that I is Op((TH ↓ k)↑1/2) since it is zero mean

process. By using cj,th ↓ c̃j,th = (H↑1→ωj ↓ ω̃j)→f̃th +ω→
jH

↑1(Hfth ↓ f̃th) and following Bai and

Ng (2006), we have II ↔ 0 if
⇐
n/TH ↔ 0 and n/↼2NTH

↔ 0. Similarly, we have III ↔ 0 as

n/↼2NTH
↔ 0. Finally, for IV , by Cauchy-Schwarz inequality, we have

→IV → ↑



 1

TH ↓ k

TH∑

th=k+1

∥∥∥∥∥
1⇐
n

n∑

i=1

(ci,th ↓ c̃i,th)ωi

∥∥∥∥∥

2



1/2 

 1

TH ↓ k

TH∑

th=k+1

∥∥∥∥∥
1⇐
n

n∑

i=1

(cj,th↑k ↓ c̃j,th↑k)ωj

∥∥∥∥∥

2



1/2

.

Since ci,th ↓ c̃i,th = (H↑1ωi ↓ ω̃i)→f̃th + ω→
iH

↑1(Hfth ↓ f̃th), by using cr inequality,

1

TH ↓ k

TH∑

th=k+1

∥∥∥∥∥
1⇐
n

n∑

i=1

(ci,th ↓ c̃i,th)ω

∥∥∥∥∥

2

↑ 2


1

TH ↓ k

TH∑

th=k+1

→fth→
2

∥∥∥∥∥
1⇐
n

n∑

i=1

ωi(H
↑1→ωi ↓ ω̃i)

→

∥∥∥∥∥

2

+ 2
∥∥H↑1

∥∥2


1

n

n∑

i=1

→ωi→2
2

1

TH ↓ k

TH∑

th=k+1

∥∥∥f̃th ↓Hfth

∥∥∥
2

.
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The first term term and the second term converge to zero as
⇐
n/T ↔ 0 and n/TH ↔ 0.

The last remaining term is #̂k ↓H↑1→#̄n,kH↑1. We can rewrite this term as follows.

#̂k ↓H↑1→#̄n,kH
↑1 =

1

n

n∑

i=1

n∑

j=1

ε̃ij,k(ω̃iω̃
→
j ↓H↑1→ωiω

→
jH

↑1)

=
1

n

n∑

i=1

n∑

j=1

(ε̃ij,k ↓ εij,k)(ω̃iω̃
→
j ↓H↑1→ωiω

→
jH

↑1) +
1

n

n∑

i=1

n∑

j=1

εij,k(ω̃iω̃
→
j ↓H↑1→ωiω

→
jH

↑1)

= I + II.

Then, I ↔ 0 using the fact that it is zero mean process. We decompose the second term II

as follows.

II =
1

n

n∑

i=1

n∑

j=1

εij,k(ω̃i ↓H↑1ωi)ω̃
→
j +

1

n

n∑

i=1

n∑

j=1

εij,kωiH
↑1(ω̃j ↓H↑1→ωj)

→ = a+ b.

Then, we can show that a ↔ 0 and b ↔ 0 since a and b are of order Op(T
↑1/2
H ) +Op(↼

↑2
NTH

).

Since H
p↓↔ H0, we can complete the proof.

The proof of Proposition 2.1 is straightforward by applying Theorem 2.2.

C Bootstrap procedure

In Algorithm 1, we present a description of our bootstrap procedure using AR-sieve + CSD

bootstrap. In step 1, we resample the residuals of the factor model by AR sieve + CSD

bootstrap. This is identical to the bootstrap method we present in the main text (Algorithm

1 in the main text). In step 2, we resample the regression residuals and obtain the bootstrap

sample for the MIDAS regression model. In step 3, using the two-step estimation procedure,

we can obtain the bootstrap estimators.
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Algorithm 1 Bootstrap for the factor-MIDAS regression model

1. Generate bootstrap factor model. For th = 1, . . . , TH , let

X≃
i,th

= ω̃→
if̃th + e≃i,th and X≃

th
= ”̃f̃th + e≃th ,

where e≃i,th is obtained as follows. For each i = 1, . . . , N , select an order pi = pi(TH)
with pi ⇓ TH (e.g., by AIC) and fit a pi-th order autoregressive model to ẽi,1, . . . , ẽi,TH

,
where ẽi,th = Xi,th ↓ ω̃→

if̃th .

Denote ▷̃i(pi) = (▷̃i,j(pi), j = 1, . . . , pi) as the Yule-Walker autoregressive parameter
estimators, such that ▷̃i(pi) = #̃(pi)↑1⇀̃pi , with ⇀̃pi = (⇀̃e(1), ⇀̃e(2), . . . , ⇀̃e(pi))→ and
#̃(pi) = (⇀̃e(r ↓ s))r,s=1,2,...,pi such that

⇀̃e(ϑ) =
1

TH

TH↑|ϱ |∑

th=1

(ẽi,th ↓ ēi)(ẽi,th+|ϱ | ↓ ēi),

for ϑ = 0, . . . , pi and ēi = T↑1
H

∑TH

th=1 ẽi,th . With chosen lag length pi = pi(TH), generate

e≃i,th =
pi∑

j=1

▷̃i,j(pi)e
≃
i,th↑j + u≃

i,th
, th = 1, . . . , TH ,

where u≃
th

= (u≃
1,th

, . . . , u≃
N,th

)→ = !̃1/2
u ηth with ηth ⇔ i.i.d.(0, IN). Set initial conditions

e≃i,0, . . . , e
≃
i,1↑pi = 0 for i = 1, . . . , N .

Choose !̃u = (ε̂u,ij)i,j=1,...,N by thresholding, with

ε̂u,ij =


ε̃u,ij i = j

ε̃u,ij (|ε̃u,ij| > ◁) i ⇒= j,
where ε̃u,ij =

1

TH

TH∑

th=1

ũi,th ũj,th ,

◁ is a threshold, and ũi,th = ẽi,th ↓
∑pi

j=1 ▷̃i,j(pi)ẽi,th↑j for i = 1, . . . , N and th =
1 + pi, . . . , TH .

2. Generate bootstrap factor-MIDAS regression model. For t = 1, . . . , T , con-
struct

y≃t = ↽̃0 + ↽̃→
1F̃t(φ̃) + ϖ≃t ,

where ϖ≃t = 0tϖ̂t, ϖ̂t = yt ↓ ↽̃0 ↓ ↽̃→
1F̃t(φ̃), and 0t ⇔ i.i.d.(0, 1) across t, independent of

ηth .

3. Extract bootstrap factors and estimate bootstrap parameters. Obtain the
estimated factors f̃ ≃

th
by principal component analysis on the bootstrap panel X≃

th
.

After, regress y≃t on 1 and temporally aggregated factors (f̃ ≃→
t↑1/m, . . . , f̃

≃→
t↑K/m)

→ and

obtain the bootstrap estimates ↽̃≃ and φ̃≃.
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D Proof of results in Section 3

In this section, we first deliver the bootstrap high-level conditions under which our boot-

strap data generating process yields a consistent bootstrap distribution. Our bootstrap

data generating process (DGP) is similar to the one proposed by GP (2014). Let {e≃th =

(e≃1,th , . . . , e
≃
N,th

)→} be a bootstrap sample from {ẽth = (ẽ1,th , . . . , ẽN,th)
→}, where ẽth = Xth ↓

”̃f̃th are the residuals from the original panel dataset. {ϖ≃t} are the resampled bootstrap

residuals from {ϖ̃t = yt ↓ g(F̃t; ς̃)}. Using these two bootstrap samples, {e≃th} and {ϖ≃t}, the

bootstrap data generating process (DGP) is as follows.

X≃
th
= ”̃f̃th + e≃th , for th = 1, . . . , TH ,

y≃t = ↽̃0 + ↽̃→
1F̃t(φ̃) + ϖ≃t , for t = 1, . . . , T.

We can obtain the bootstrap estimators by following a two-step process that is similar to the

procedure used in the original sample: in the first step, we estimate the factors from a new

bootstrap panel dataset X≃
th

and denote them by f̃ ≃
th
, then in the second step, by regressing

y≃t on 1 and F̃ ≃
t (φ̃), we can obtain the bootstrap estimators. We denote these estimators by

ς̃≃, which are the analogues of NLS estimators from the original sample. Below conditions

are our bootstrap high-level conditions. The conditions are similar to those of GP (2014).

Condition C.1* (Weak Time Series and Cross Section Dependence in e→
ith

)

(a) E≃(e≃i,th) = 0 for all (i, th).

(b)
1
TH

∑TH

th=1

∑TH

sh=1 |⇀≃
shth

|2 = Op(1), where ⇀≃
shth

= E≃
(

1
N

∑N
i=1 e

≃
i,th

e≃i,sh

)
.

(c)
1
T 2
H

∑TH

th=1

∑TH

sh=1 E
≃
∣∣∣ 1↓

N

∑N
i=1(e

≃
i,th

e≃i,sh ↓ E≃(e≃i,the
≃
i,sh

))
∣∣∣
2

= Op(1).

Condition C.2* (Weak Dependence Among f̃th, ω̃i, and ẽ→
i,th

)
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(a)
1
TH

∑TH

th=1

∑TH

sh=1 f̃sh f̃
→
th
⇀≃
shth

= Op(1).

(b)
1
TH

∑TH

th=1 E
≃
∥∥∥ 1↓

THN

∑TH

sh=1

∑N
i=1 f̃sh(e

≃
i,th

e≃i,sh ↓ E≃(e≃i,the
≃
i,sh

))
∥∥∥
2

= Op(1).

(c) E≃
∥∥∥ 1↓

THN

∑TH

th=1

∑N
i=1 f̃thω̃

→
ie

≃
i,th

∥∥∥
2

= Op(1).

(d)
1
TH

∑TH

th=1 E
≃
∥∥∥ 1↓

N

∑N
i=1 ω̃ie≃i,th

∥∥∥
2

= Op(1).

(e)
1
TH

∑TH

th=1

(
!̃→e↓

t
h↓

N

)(
e↓

→
t
h
!̃

↓
N

)
↓#̃ = op↓(1), in probability, where #̃ ≃ 1

TH

∑TH

th=1 Var
≃
(

1↓
N
”̃→e≃th

)
>

0.

Condition C.3* (Serial Dependence among f̃th, ω̃i, and ẽ→
i,th

)

(a)
1
TH

∑TH

th=1 E
≃
∥∥∥ 1↓

THN

∑TH

sh=1

∑N
i=1 f̃sh(e

≃
i,th

e≃i,sh↑k ↓ E≃(e≃i,the
≃
i,sh↑k))

∥∥∥
2

= Op(1) for all k.

(b) E≃
∥∥∥ 1↓

THN

∑TH

th=1 f̃the
≃→
th↑k”̃

∥∥∥
2

= Op(1) for all k.

(c)
1
TH

∑TH

th=1

(
!̃e↓

t
h↓
N

)(
e↓

→
t
h
↑k

!̃
↓
N

)
↓#̃k = op↓(1), in probability, where #̃k ≃ 1

TH

∑TH

th=1 Cov
≃
(

!̃→e↓
t
h↓

N
,
!̃→e↓

t
h
↑k↓

N

)
>

0.

Condition C.4* (Weak Dependence Between e→
i,th

and ε→t )

(a)
1
T

∑T
t=1 E

≃
∣∣∣ 1↓

TN

∑T
s=1

∑N
i=1 ϖ

≃
s(e

≃
i,t↑j/me

≃
i,s↑j/m ↓ E≃(e≃i,t↑j/me

≃
i,s↑j/m))

∣∣∣
2

= Op(1) for j =

0, . . . ,m↓ 1.

(b) E≃
∥∥∥ 1↓

TN

∑T
t=1

∑N
i=1 ω̃ie≃i,t↑j/mϖ

≃
t

∥∥∥
2

= Op(1), where E(e≃i,t↑j/m) = 0 for all (i, t) and

j = 0, . . . ,m↓ 1.

Condition C.5* (Bootstrap CLT)

(a) E≃(ϖ≃t ) = 0 and
1
T

∑T
t=1 E

≃ |ϖt|2 = Op(1).
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(b) $̃↑1/2 1↓
T

∑T
t=1 g̃ω,tϖ

≃
t

d≃↓↔ N(0, Ir+p), in probability, where E≃
∥∥∥ 1↓

T

∑T
t=1 g̃ω,tϖ

≃
t

∥∥∥
2

= Op(1)

and g̃ω,t = ϱg(F̃t,ς)/ϱς, and $̃ ≃ Var
≃
(

1↓
T

∑T
t=1 g̃ω,tϖ

≃
t

)
> 0.

Condition C.6* (Bootstrap Consistency)

(a) plim $̃ = %0$%→
0, where $̃ = V ar≃

(
1↓
T

∑T
t=1 g̃ω,tϖ

≃
t

)
and g̃ω,t ≃ ϱg(F̃t,ς)/ϱς.

(b) plim #̃ = H0#H →
0 and plim #̃j↑l = H0#j↑lH →

0.

Conditions C.1* through C.4* are the bootstrap analogues of Assumptions A.1 to A.6

in Appendix A. Conditions C.1*-C.2* are similar to the bootstrap high level conditions in

GP (2014). The mean of bootstrap residuals are required to be zeros for all (i, th), which

implies that we need to recenter the residuals when we resample them. Condition C.3* is a

new set of high-level conditions required in our context. Unlike in GP (2014), since our bias

contains the term which relies on serial dependence in the idiosyncratic error term in the

factor model, we impose weak serial dependence among f̃th , ω̃i and e≃i,th in Condition C.3*.

Note that since f̃th and ω̃i are fixed in the bootstrap world, serial dependence in the factors

can be implied by restricting the serial dependence of ei,th . Condition C.4* is similar to

Condition C* in GP (2014), and we restrict the dependence between two bootstrap residuals.

Condition C.5* implies that we can apply a central limit theorem on the score vector, g̃ω,tϖ≃t .

In Condition C.6*, we provide conditions for consistency of the bootstrap distribution. In

Condition C.6*-(a), $ denotes the bootstrap variance of the score vector in the bootstrap

world and it is a bootstrap analogue of $. It implies that the bootstrap variance is rotated

with a block diagonal matrix, %0. This is because the score vector g̃ω,t =
(
F →
t (φ)H

→, ↽→ εFt(ϑ)
εϑ→

)→

is a rotated version of gω,t, where the rotation is given by %0. Similarly, #̃ and #̃j↑l, defined in

Condition C.2* and Condition C.3* are the bootstrap analogues of # and #j↑l, respectively.
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Condition C.6*-(a) and (b) imply that it is crucial how we mimic the error terms of the

MIDAS regression and the idiosyncratic factor error terms in the bootstrap world. Moreover,

in our context, since the bias depends on both serial and cross-sectional dependence of eth ,

the idiosyncratic error term in the bootstrap world should mimic the dependence in the time

series and cross-sectional dimension.

Remark 1 Note that ς̃≃
is obtained by regressing y≃t on 1 and a temporally aggregated version

of the lags of the bootstrap estimated factors, F̃ ≃
t (φ̃). The bootstrap estimated factors, f̃ ≃

th
,

consistently estimate the rotated version of true “latent” bootstrap factors, H≃f̃th, where

H≃ = Ṽ ≃↑1 f̃↓→f̃
TH

!̃→!̃
N and Ṽ ≃

is the r ↗ r diagonal matrix containing on the main diagonal

the r largest eigenvalues of X≃X≃→/NTH , in decreasing order. This matrix is the bootstrap

analogue of the rotation matrix in the original sample, H = Ṽ ↑1 f̃ →f
TH

!→!
N . As discussed in GP

(2014), the indeterminacy of the rotation matrix is not a problem in the bootstrap world,

as H≃
does not depend on the population values. Moreover, H≃

is asymptotically equal to

H≃
0 = diag(±1), where the sign is determined by the sign of f̃ ≃→f̃/TH . This implies that the

bootstrap factors are identified up to a change of sign.

Remark 2 Similar to the discussion in GP (2014) regarding the rotation of the bootstrap

estimators, our NLS estimators of bootstrap DGP rotate due to the rotation in the factors

in the bootstrap world. Note that we can rewrite y≃t as follows.

y≃t = ↽̃0 + ↽̃→
1H

≃↑1F̃ ≃
t (φ̃) + ↽̃→

1H
≃↑1(H≃F̃t(φ̃)↓ F̃ ≃

t (φ̃)) + ϖ≃t = g(F̃ ≃
t , ς̃) + ξ≃t ,

where g(F̃ ≃
t , ς̃) ≃ ↽̃0 + ↽̃→

1H
≃↑1F̃ ≃

t (φ̃) and ξt ≃ ↽̃→
1H

≃↑1(H≃F̃t(φ̃) ↓ F̃ ≃
t (φ̃)) + ϖ≃t . Thus, ς̃≃

estimates (%≃)↑1ς̃, where %≃ = diag(1, H≃, Ip) is a block diagonal matrix. (%≃)↑1ς̃ are the

rotated version of NLS estimators in the original sample. As H≃
is asymptotically equal
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to H≃
0 , (%

≃)↑1ς̃ is equal to (%≃
0)

↑1ς̃, where %≃
0 = diag(1, H≃

0 , Ip), and (%≃
0)

↑1ς̃ is the sign-

adjusted version of ς̃.

Lemma D.1 Let the Assumptions A.1-A.5 in Appendix A hold and consider any residual-

based bootstrap scheme for which Conditions C.1*-C.5* are verified. Suppose
⇐
T/N ↔

c, 0 ↑ c < ↘. In addition, let the two following conditions hold: (1) Condition C.6*-(a) is

verified and (2) c = 0 or Condition C.6*-(b) is verified; then as N, T ↔ ↘,

⇐
T (ς̃≃ ↓ (%≃

0)
↑1ς̃)

d↓↓↔ N(↓c(%≃
0)

↑1’ω, (%
≃
0)

↑1!ω(%
≃
0)

↑1),

in probability and ’ω and !ω are defined in Theorem 2.1.

Remark 3 In Lemma D.1, we derive the bootstrap distribution of the estimators, ς̃≃
. Ac-

cording to Lemma D.1, the distribution of
⇐
T (ς̃≃ ↓ (%≃

0)
↑1ς̃) follows a normal distribution

with a non-zero mean vector, ↓c(%≃
0)

↑1’ω. The asymptotic bias is proportional to (H≃
0 )

↑1↽̃.

However, the weighting parameters φ̃≃ are not a!ected by the rotation problem.

Remark 4 To match the bootstrap distribution with the limiting distribution of the estima-

tors in the original sample to achieve bootstrap consistency since our rotation matrix H≃
may

not be an identity matrix. Therefore, we consider the rotated version of our bootstrap results,

given by
⇐
T (%≃ς̃≃ ↓ ς̃). For the consistency of the rotated bootstrap results, we rely on the

Corollary 3.1. in GP (2014) such that supx⇐Rr+p |P ≃(
⇐
T (%≃

0ς̃
≃ ↓ ς̃) ↑ x)↓P (

⇐
T (ς̃↓ς) ↑

x)| p↓↔ 0. For detail, see GP (2014). This corollary justifies the use of a residual-based

bootstrap method in the context of the factor-MIDAS regression models.

Notation: P ≃ denotes the bootstrap probability measure, conditional on the original

sample. The bootstrap measure P ≃ depends on the original sample size N , T and TH , and
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sample realization ◁, but for a simpler notation, we omit these and write P ≃ for P ≃
NT,ς.

We write T ≃
NT = op↓(1), in probability, or T ≃

NT
p≃↓↔ 0, in probability, for any bootstrap test

statistics T ≃
NT , if, when for any ↼ > 0, P ≃(|T ≃

NT | > ↼) = op(1). If for all ↼ > 0, there

exists Mφ < ↘ such that limN,T↔↗ P [P ≃(|T ≃
NT | > Mφ) > ↼] = 0, we write as T ≃

NT =

Op↓(1), in probability. We write T ≃
NT

d≃↓↔ D, in probability, if T ≃
NT weakly converges to the

distribution D under P ≃, conditional on a sample with probability that converges to one, i.e.

E≃(f(T ≃
NT ))

p↓↔ E(f(D)) for all bounded and uniformly continuous function f .

Lemma D.2 1
T

∑T
t=1 ϖ

≃
t (f̃

≃
t↑j/m ↓H≃f̃t↑j/m) = op↓(1).

Lemma D.3 If
⇐
T/N ↔ c, where 0 ↑ c < ↘,

(a)
1↓
T

∑T
t=1(f̃

≃
t↑j/m ↓H≃f̃t↑j/m)(f̃ ≃

t↑j/m ↓H≃f̃t↑j/m)→ =
↓
T

N Ṽ ≃↑1H≃#≃H≃Ṽ ≃↑1 + op↓(1),

(b)
1↓
T

∑T
t=1(f̃

≃
t↑j/m ↓H≃f̃t↑j/m)(f̃ ≃

t↑l/m ↓H≃f̃t↑l/m)→ =
↓
T

N Ṽ ≃↑1H≃#≃
j↑lH

≃Ṽ ≃↑1 + op↓(1),

(c)
1↓
T

∑T
t=1 H

≃f̃t↑j/m(f̃ ≃
t↑j/m ↓H≃f̃t↑j/m)→ =

↓
T

N H≃#≃
(

1
TH

∑TH

sh=1 f̃sh f̃
≃→
sh

)
Ṽ ≃↑2 + op↓(1),

(d)
1↓
T

∑T
t=1 H

≃f̃t↑l/m(f̃ ≃
t↑j/m↓H≃f̃t↑j/m)→ =

↓
T

N H≃
(

1
T

∑T
t=1 f̃t↑l/mf̃ →

t↑j/m

)
#≃

(
1
TH

∑TH

sh=1 f̃sh f̃
≃→
sh

)
Ṽ ≃↑2+

op↓(1).

Lemma D.4 If
⇐
T/N ↔ c, where 0 ↑ c < ↘,

(a)
1↓
T

∑T
t=1(F̃

≃
t (φ̃)↓H≃F̃t(φ̃))(F̃ ≃

t (φ̃)↓H≃F̃t(φ̃))→

= cH≃
0 Ṽ

↑1
(∑K

j=1 wj(φ̃)#≃wj(φ̃) +
∑K

j=1 wj(φ̃)#≃
j↑lwl(φ̃)

)
Ṽ ↑1H≃

0 + op↓(1),

(b)
1↓
T

∑T
t=1 H

≃F̃t(φ̃)(F̃ ≃
t (φ̃)↓H≃F̃t(φ̃))→

= cH≃
0

[∑K
j=1 w

2
j (φ̃) +

∑K
j=1

∑K
l ↘=j wj(φ̃)

(
1
T

∑T
t=1 f̃t↑l/mf̃ →

t↑j/m

)
wl(φ̃)

]
#≃Ṽ ↑2H≃

0+op↓(1).

22



Proof of Lemma D.1. Since in the bootstrap world, ς̃≃ maximizes the following

objective function:

Q̃≃
T (ς̃) = ↓ 1

T

T∑

t=1

[yt ↓ g(F̃ ≃
t , ς̃)]

2.

where g(F̃ ≃
t , ς̃) = ↽̃→H≃↑1F̃ ≃

t (φ̃). Then, we have

⇐
T (ς̃≃ ↓ (%≃)↑1ς̃) = ↓


1

T

T∑

t=1

H(F̃ ≃
t , ς̃T )

↑1
1⇐
T

T∑

t=1

s(F̃ ≃
t , ς̃),

where s(F̃ ≃
t , ς̃) is a score vector and H(F̃ ≃

t , ς̃) is a Hessian matrix in the bootstrap world.

ς̃T is intermediate between ς̃ and ς̃≃. We analyse each term. We can write the score vector

as follows.

1⇐
T

T∑

t=1

s(F̃ ≃
t , ς̃) =

1⇐
T

T∑

t=1

[ϖ≃t + ↽̃→H≃↑1(H≃F̃t(φ̃)↓ F̃ ≃
t (φ̃))]

ϱg(F̃ ≃
t , ς̃)

ϱς̃
,

where the partial derivative is

ϱg(F̃ ≃
t , ς̃)

ϱς̃
= %≃ϱg(F̃t,ς)

ϱς
+ P ≃

t , where P ≃
t =





0

F̃ ≃
t (φ̃)↓H≃F̃t(φ)

εF̃ ↓
t
(ϑ̃)→

εϑ̃
H≃↑1→ ↽̃ ↓ εF̃t(ϑ)→

εϑ H↑1→↽





,

and %≃ = diag(1, H≃, Ip). Under this decomposition, we can analyse 1↓
T

∑T
t=1 ϖ

≃
t
εg(F̃ ↓

t
,ω̃)

εω̃ into
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two non-zero blocks of P ≃
t . The second block can be written as follows.

1⇐
T

T∑

t=1

ϖ≃t (F̃
≃
t (φ̃)↓H≃F̃t(φ))

=
1⇐
T

T∑

t=1

ϖ≃t


K∑

j=1

wj(φ̃)(f̃
≃
t↑j/m ↓H≃f̃t↑j/m) +

K∑

j=1

(wj(φ̃)↓ wj(φ))H
≃f̃t↑j/m



=
K∑

j=1

wj(φ̃)
1⇐
T

T∑

t=1

ϖ≃t (f̃
≃
t↑j/m ↓H≃f̃t↑j/m) +

K∑

j=1

(wj(φ̃)↓ wj(φ))H
≃ 1⇐

T

T∑

t=1

ϖ≃t f̃t↑j/m

= op↓(1).

Since φ̃
p↓↔ φ and weighting function is continuous function, we can use continuous mapping

theorem and have the second part as op(1). By Lemma D.2 we can show that the first part

is op↓(1). The third part can be argued similarly. Since it is easier to check for each row, we

write k-th row of the third block in P ≃
t as

εF̃ ↓
k,t

(ϑ̃k)

εϑ̃k
H≃↑1→

k ↽̃k ↓ εF̃k,t(ϑk)
εϑk

H↑1→

k ↽k


. Then, for this

k-th row, we can write it as follows.

1⇐
T

T∑

t=1

ϖ≃t


ϱF̃ ≃

k,t(φ̃k)

ϱφ̃k
H≃↑1→

k ↽̃k ↓
ϱF̃k,t(φk)

ϱφk
H↑1→

k ↽k



= H≃↑1→

k ↽̃k


1⇐
T

T∑

t=1

ϖ≃t

K∑

j=1

ϱwj,k(φ̃k)

ϱφ̃k
(f̃ ≃

k,t↑j/m ↓H≃
k f̃k,t↑j/m)

+
1⇐
T

T∑

t=1

ϖ≃t

K∑

j=1


ϱwj,k(φ̃k)

ϱφ̃k
↓ ϱwj,k(φk)

ϱφk


f̃k,t↑j/m



+ (↽̃k ↓H↑1→

k ↽k)
1⇐
T

T∑

t=1

ϖ≃t


K∑

j=1

ϱwj,k(φk)

ϱφk
f̃k,t↑j/m



= op↓(1),

where Hk is the k-th diagonal element in the rotation matrix H and ↽k is the k-th slope

parameter in ↽. We can obtain the second equality because ↽̃
p↓↔ H↑1→↽ and Lemma D.2.
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Finally, we have the following result.

1⇐
T

T∑

t=1

ϖ≃t
ϱg(F̃t; ς̃)

ϱς̃
d↓↓↔ N(0,%≃

0$̃%
≃
0), (5)

where %≃
0 = plim%≃, $̃ ≃ Var≃

(
1↓
T

∑T
t=1 ϖ

≃
t g̃ω,t

)
, and g̃ω,t = ϱg(F̃t,ς)/ϱς.

Now, we analyse the second term in the score vector 1↓
T

∑T
t=1 ↽̃

→H≃↑1(H≃F̃t(φ̃)↓F̃ ≃
t (φ̃))

εg(F̃ ↓
t
,ω)

εω̃

with respect to ↽̃ and φ̃, respectively. (Note that there is no bias with respect to ↽̃0, therefore

we focus on ↽̃1 here.) By Lemma D.4, the score vector with respect to ↽̃1 can be written as

follows.

1⇐
T

T∑

t=1

(H≃F̃t(φ̃)↓ F̃ ≃
t (φ̃))F̃

≃
t (φ̃)

→H≃↑1→ ↽̃1

= ↓


1⇐
T

T∑

t=1

(F̃ ≃
t (φ̃)↓H≃F̃t(φ̃))(F̃

≃
t (φ̃)↓H≃F̃t(φ̃))

→ +
1⇐
T

T∑

t=1

H≃F̃t(φ̃)(F̃
≃
t (φ̃)↓H≃F̃t(φ̃))

→


H≃↑1→ ↽̃1

= ↓cH≃
0


Ṽ ↑1


K∑

j=1

wj(φ̃)#̃wj(φ̃) +
K∑

j=1

K∑

l ↘=j

wj(φ̃)#̃j↑lwl(φ̃)


Ṽ ↑1

+


K∑

j=1

w2
j (φ̃) +

K∑

j=1

K∑

l ↘=j

wj(φ̃)


1

T

T∑

t=1

F̃t↑j/mF̃
→
t↑l/m


wl(φ̃)


#̃Ṽ ↑2


↽̃1

= ↓cH≃
0 B̃ϖ1 + op↓(1)

in probability, where we define B̃ϖ1 as follows.

B̃ϖ1 ≃

Ṽ ↑1


K∑

j=1

wj(φ̃)#̃wj(φ̃) +
K∑

j=1

K∑

l ↘=j

wj(φ̃)#̃j↑lwl(φ̃)


Ṽ ↑1

+


K∑

j=1

w2
j (φ̃) +

K∑

j=1

K∑

l ↘=j

wj(φ̃)


1

T

T∑

t=1

F̃t↑j/mF̃
→
t↑l/m


wl(φ̃)


#̃Ṽ ↑2


↽̃1.
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We can also rewrite the part with respect to φ̃ by Lemma D.4 as follows.

1⇐
T

T∑

t=1

ϱF̃ ≃
t (φ̃)

ϱφ̃
H≃↑1→ ↽̃1↽̃

→
1H

≃↑1[H≃F̃t(φ̃)↓ F̃ ≃
t (φ̃)]

= ↓c↽̃1 ⇑

Ṽ ↑1


K∑

j=1

ϱwj(φ̃)

ϱφ̃
#̃wj(φ̃) +

K∑

j=1

K∑

l ↘=j

ϱwj(φ̃)

ϱφ̃
#̃j↑lwl(φ̃)


Ṽ ↑1

+


K∑

j=1

ϱwj(φ̃)

ϱφ̃
wj(φ̃) +

K∑

j=1

K∑

l ↘=j

ϱwj(φ̃)

ϱφ̃


1

T

T∑

t=1

F̃t↑j/mF̃
→
t↑l/m


wl(φ̃)


#̃Ṽ ↑2


↽̃1

= ↓cB̃ϑ + op↓(1),

in probability, where we define B̃ϑ as follows.

B̃ϑ ≃ ↽̃1 ⇑

Ṽ ↑1


K∑

j=1

ϱwj(φ̃)

ϱφ̃
#̃wj(φ̃) +

K∑

j=1

K∑

l ↘=j

ϱwj(φ̃)

ϱφ̃
#̃j↑lwl(φ̃)


Ṽ ↑1

+


K∑

j=1

ϱwj(φ̃)

ϱφ̃
wj(φ̃) +

K∑

j=1

K∑

l ↘=j

ϱwj(φ̃)

ϱφ̃


1

T

T∑

t=1

F̃t↑j/mF̃
→
t↑l/m


wl(φ̃)


#̃Ṽ ↑2


↽̃1.

Next, we derive the hessian matrix. We first rewrite it as follows.

1

T

T∑

t=1

H(F̃ ≃
t , ς̃) =

1

T

T∑

t=1

ξt
ϱ2g(F̃ ≃

t , ς̃)

ϱς̃ϱς̃→ +
1

T

T∑

t=1

ϱg(F̃ ≃
t , ς̃)

ϱς̃

ϱg(F̃ ≃
t , ς̃)

ϱς̃→ = H1 +H2.

Then, H1 is op↓(1) by Condition C.5*-(b) and the results in the proof for Lemma D.3. The

second term H2 converges in probability to %≃
0!̃%

≃
0 as following:

1

T

T∑

t=1

ϱg(F̃ ≃
t , ς̃)

ϱς̃

ϱg(F̃ ≃
t , ς̃)

ϱς̃→
p↓↓↔ %≃

0E
[ϱg(F̃t,ς)

ϱς

ϱg(F̃t,ς)

ϱς→

]
%≃

0 ≃ %≃
0!̃%

≃
0, (6)

where E
[
εg(F̃t,ω)

εω
εg(F̃t,ω)

εω→

]
≃ !̃. We can obtain this by rewriting εg(F̃ ↓

t
,ω̃)

εω̃ = %≃ εg(F̃t,ω)
εω + P ≃

t .

Then, 1
T

∑T
t=1

εg(F̃t,ω̃)
εω̃ P ≃→

t = op↓(1) and
1
T

∑T
t=1 P

≃
t P

≃→
t = op↓(1), in probability. By putting all

together, we have

⇐
T (ς̃≃ ↓ (%≃

0)
↑1ς̃)

d↓↓↔ N(↓c(%≃
0!̃%

≃
0)

↑1%≃
0B̃ω,%

≃↑1
0 !̃↑1$̃!̃↑1%≃↑1

0 ), (7)
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in probability, where B̃ω = (0, B̃ϖ1 , B̃ϑ)→. Under Assumptions A.1-A.6, we have plim Ṽ = V ,

plim ς̃ = %↑1ς, plim%≃ = %≃
0, and plim $̃ = %0$%0. This implies that

⇐
T (ς̃≃↓(%≃

0)
↑1ς̃)

d↓↓↔

N(↓c%≃↑1
0 ’ω,%

≃↑1
0 !ω%

≃↑1
0 ), in probability.

The proof of Lemma D.3 is similar to the proof of Lemma B.2 in GP (2014) and

Lemma D.3 - (a) and (c) are similar to the proof of Lemma B.3 - (a) and (b) in GP (2014),

respectively. Thus, we focus here to prove Lemma D.3-(b) and (d), which are new.

Proof of Lemma D.3. Part(b): Using the identity in GP (2014), we can rewrite the

part (b) as follows.

1

T

T∑

t=1

(f̃ ≃
t↑j/m ↓H≃f̃t↑j/m)(f̃

≃
t↑l/m ↓H≃f̃t↑l/m)

→

= Ṽ ≃↑1 1

T

T∑

t=1

(A≃
1,t↑j/m + A≃

2,t↑j/m + A≃
3,t↑j/m + A≃

4,t↑j/m)

↗ (A≃
1,t↑l/m + A≃

2,t↑l/m + A≃
3,t↑l/m + A≃

4,t↑l/m)
→Ṽ ≃↑1.

Ignoring Ṽ ≃↑1 = Op↓(1), we can show that the terms except 1
T

∑T
t=1 A

≃
3,t↑j/mA

≃→
3,t↑l/m are negli-

gible. For example, we have 1
T

∑T
t=1 A

≃
1,t↑j/mA

≃→
1,t↑l/m = Op↓(T↑1), 1

T

∑T
t=1 A

≃
2,t↑j/mA

≃→
2,t↑l/m =

Op↓(N↑1↼↑2
NTH

), and 1
T

∑T
t=1 A

≃
4,t↑j/mA

≃→
4,t↑l/m = Op↓(N↑1↼↑2

NTH
). The cross terms are: 1

T

∑T
t=1 A

≃
1,t↑j/mA

≃→
2,t↑l/m =

Op↓(T↑1/2N↑1/2↼↑1
NTH

), 1
T

∑T
t=1 A

≃
1,t↑j/mA

≃→
3,t↑l/m = Op↓(T↑1/2N↑1/2), 1

T

∑T
t=1 A

≃
1,t↑j/mA

≃→
4,t↑l/m =

Op↓(T↑1/2N↑1/2), 1
T

∑T
t=1 A

≃
2,t↑j/mA

≃→
3,t↑l/m = Op↓(N↑1↼↑2

NTH
), A≃

2,t↑j/mA
≃→
4,t↑l/m = Op↓(N↑1↼↑1

NTH
),

and 1
T

∑T
t=1 A

≃
3,t↑j/mA

≃→
4,t↑l/m = Op↓(N↑1↼↑1

NTH
). Since we can show that

1

T

T∑

t=1

A≃
3,t↑j/mA

≃→
3,t↑l/m =

1

N
H≃ 1

T

T∑

t=1


”̃→e≃t↑j/m⇐

N


e≃

→

t↑l/m”̃⇐
N


H≃ + op↓(1),

we have

1⇐
T

T∑

t=1

(f̃ ≃
t↑j/m ↓H≃f̃t↑j/m)(f̃

≃
t↑l/m ↓H≃f̃t↑l/m)

→ =

⇐
T

N
Ṽ ≃↑1H≃#̃j↑lH

≃Ṽ ≃↑1 + op↓(1),
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where we define #≃
j↑l ≃ 1

T

∑T
t=1

(
!̃→e↓

t↑j/m↓
N

)(
e↓

→
t↑l/m

!̃
↓
N

)
. Part (d): Similar to the identity we

used in part (b), we can rewrite part (d) as follows.

1⇐
T

T∑

t=1

H≃f̃t↑j/m(f̃
≃
t↑l/m ↓H≃f̃t↑l/m)

→

=
1⇐
T

T∑

t=1

H≃f̃t↑j/m(A
≃
1,t↑l/m + A≃

2,t↑l/m + A≃
3,t↑l/m + A≃

4,t↑l/m)
→Ṽ ≃↑1

≃
⇐
TH≃(d≃f1 + d≃f2 + d≃f3 + d≃f4)

→Ṽ ≃↑1,

where d≃fi ≃ 1
T

∑T
t=1 f̃t↑j/mA≃→

i,t↑l/m for i = 1, 2, 3, 4. Then, we can obtain d≃f1 = Op↓(↼
↑1
NTH

T↑1/2)+

Op↓(T
↑1
H ), d≃f2 = Op↓((TN)↑1/2) by Condition C.3*-(a) and d≃f3 = Op↓((TN)↑1/2) by Con-

dition C.3*-(b). Finally, d≃f4 = 1
N

(
1
T

∑T
t=1 f̃t↑l/mF̃ →

t↑j/m

)
#≃

(
1
TH

∑TH

t=1 f̃tf̃
≃→
t

)
Ṽ ≃↑1 + op↓(1).

Thus,

1⇐
T

T∑

t=1

H≃f̃t↑j/m(f̃
≃
t↑l/m ↓H≃f̃t↑l/m)

→

=

⇐
T

N
H≃


1

T

T∑

t=1

f̃t↑l/mf̃
→
t↑j/m


#≃


1

TH

TH∑

s=1

f̃sf̃
≃→
s


Ṽ ≃↑2 + op↓(1).
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Proof of Lemma D.4. Part (a): We rewrite part (a) and apply Lemma D.3.

1⇐
T

T∑

t=1


K∑

j=1

wj(φ̃)(f̃
≃
t↑j/m ↓H≃f̃t↑j/m)


K∑

j=1

wj(φ̃)(f̃
≃
t↑j/m ↓H≃f̃t↑j/m)

→

=
K∑

j=1

wj(φ̃)


1⇐
T

T∑

t=1

(f̃ ≃
t↑j/m ↓H≃f̃t↑j/m)(f̃

≃
t↑j/m ↓H≃f̃t↑j/m)

→


wj(φ̃)

+
K∑

j=1

K∑

l ↘=j

wj(φ̃)


1⇐
T

T∑

t=1

(f̃ ≃
t↑j/m ↓H≃f̃t↑j/m)(f̃

≃
t↑l/m ↓H≃f̃t↑l/m)

→


wl(φ̃)

= cṼ ≃↑1H≃


K∑

j=1

wj(φ̃)#
≃wj(φ̃) +

K∑

j=1

wj(φ̃)#
≃
j↑lwl(φ̃)


H≃Ṽ ≃↑1 + op↓(1)

= cH≃
0 Ṽ

↑1


K∑

j=1

wj(φ̃)#
≃wj(φ̃) +

K∑

j=1

wj(φ̃)#
≃
j↑lwl(φ̃)


Ṽ ↑1H≃

0 + op↓(1).

We use Lemma B.1 in GP (2014) to obtain the final equality, Ṽ ≃ = H≃Ṽ H≃→ +Op↓(↼
↑2
NTH

) =

Ṽ +Op↓(↼
↑2
NTH

) and H≃ = H≃
0 +Op↓(↼

↑2
NTH

) in probability.

Part (b):

1⇐
T

T∑

t=1


K∑

j=1

wj(φ̃)(f̃
≃
t↑j/m ↓H≃f̃t↑j/m)


K∑

j=1

wj(φ̃)H
≃f̃t↑j/m

→

=
K∑

j=1

wj(φ̃)
1⇐
T

T∑

t=1

H≃f̃t↑j/m(f̃
≃
t↑j/m ↓H≃f̃t↑j/m)

→wj(φ̃)

+
K∑

j=1

K∑

l ↘=j

wj(φ̃)
1⇐
T

T∑

t=1

H≃f̃t↑l/m(f̃
≃
t↑j/m ↓H≃f̃t↑j/m)

→wl(φ̃)

= cH≃


K∑

j=1

w2
j (φ̃) +

K∑

j=1

K∑

l ↘=j

wj(φ̃)


1

T

T∑

t=1

f̃t↑l/mf̃
→
t↑j/m


wl(φ̃)


#≃


1

TH

TH∑

s=1

f̃sf̃
≃→
s


Ṽ ≃↑2 + op↓(1)

= cH≃
0


K∑

j=1

w2
j (φ̃) +

K∑

j=1

K∑

l ↘=j

wj(φ̃)


1

T

T∑

t=1

f̃t↑l/mf̃
→
t↑j/m


wl(φ̃)


#≃Ṽ ↑2H≃

0 + op↓(1),

in probability. The final equality is by applying Lemma B.1. in GP (2014) and by f̃↓→ f̃
TH

Ṽ ≃↑1 =

Ṽ ↑1H≃ and H≃Ṽ ≃↑1 = Ṽ ↑1H≃.
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In the remaining part, we prove Theorem 3.1. Recall that

e≃i,th =
pi∑

j=1

▷̃i,j(pi)e
≃
i,th↑j + u≃

i,th
for th = 1, . . . , TH , (8)

where ▷̃i(pi) = (▷̃i,j(pi), j = 1, . . . , pi) is Yule-Walker autoregressive parameter estimators.

By the fact that ▷̃i(pi) is Yule-Walker estimator, we can represent (8) as moving average

process of order ↘ as

e≃i,th =
↗∑

j=0

1̃i,j(pi)u
≃
i,th↑j, (9)

with 1̃i,0(pi) = 1. By stacking (8) and (9) over i = 1, . . . , N , we can rewrite it as vector

representation as follows.

e≃th =
pi∑

j=1

%̃j(p)e
≃
th↑j + u≃

t , and (10)

e≃th =
↗∑

j=0

(̃j(p)u
≃
th↑j, (11)

with (̃0(p) = IN and p = max(p1, . . . , pN). Note that %̃j(p) is N ↗N high-dimensional ma-

trix, but it is a diagonal matrix by the construction such that %̃j(p) = diag(▷̃1,j(p1), . . . , ▷̃N,j(pN)).

To prove Theorem 3.1, we include an auxiliary Lemma below.

Lemma D.5

(a)
∑↗

j=0 →(̃j(p)↓(j→ = op(1), where (j is MA coe”cients for et such that et =
∑↗

j=0 (jut↑j.

(b)
∑↗

j=0 |1̃i,j|8 = Op(1) for i = 1, . . . , N .

Proof of Lemma D.5. To prove Lemma D.5-(a), we use the arguments in Bi, Shang,

Yang, and Zhu (2021), specifically, Lemma C.7 in their supplement appendix. The di)erence

is that their bootstrap method is applied to the factors, whereas our bootstrap method is
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constructed using the idiosyncratic error terms. Using their arguments in the proof of their

Lemma C.7 and the fact that ẽi,t↓ei,t = c̃i,t↓ci,t = Op(↼
↑1
NTH

), we can obtain the same result

as in Lemma D.5, which yields
∑↗

j=0 →(̃j(p)↓(j→ = op(1). For (b), we can use Lemma D.5

and Assumption 3 in the main text to conclude.

Proof of Theorem 3.1. Following Lemma D.1, Remark 3 and 4, it is su&cient

to show that our bootstrap algorithm described in Section 3 satisfy the bootstrap high

level conditions C.1*-C.6*. Condition C.1*. Part (a): We can show that E≃(e≃i,th) =

∑↗
j=0 1̃i,j(pi)E≃(u≃

i,th↑j) = 0 since E≃(u≃
i,th↑j) = 0 by its construction such that u≃

th
= !̃1/2

u ηth

with ηth ⇔ i.i.d.(0, IN). Part (b): We first write ⇀≃
st as follows.

⇀≃
st = E≃

(
1

N
e≃→t e

≃
s

)

= E≃


1

N

 ↗∑

j1=0

(̃j1(p)u
≃
t↑j1

→  ↗∑

j2=0

(̃j2(p)u
≃
s↑j2



= E≃


1

N
tr

 ↗∑

j1=0

↗∑

j2=0

(̃j1(p)u
≃
t↑j1u

≃→
s↑j2(̃

→
j2



= tr


1

N

↗∑

j=0

(̃j(p)!̃u(̃s↑t+j(p)
→


, (12)

where we obtain the last equality since E≃(u≃
t↑j1u

≃→
s↑j2) = 0 if t↓ j1 ⇒= s↓ j2. Using (12), we

can write our condition as following:

1

TH

TH∑

s,t=1

|⇀≃
st|2 =

1

TH

TH∑

s,t=1

∣∣∣∣∣tr


1

N

↗∑

j=0

(̃j(p)!̃u(̃s↑t+j(p)
→

∣∣∣∣∣

2

↑

→!̃u→2

N



 1

N

1

TH

TH∑

s,t=1

∥∥∥∥∥

↗∑

j=0

(̃s↑t+j(p)
→(̃j(p)

∥∥∥∥∥

2




↑

→!̃u→2

N


1

N

1

TH

TH∑

s,t=1

↗∑

j=0

∥∥∥(̃s↑t+j(p)
∥∥∥
2 ∥∥∥(̃j(p)

∥∥∥
2

= Op(1).

We can show that →!̃u→2/N = Op(1) since we can show the similar arguments in GP (2020)
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such that →!̃u→ ↑ 2(!̃u)


rank(!̃u) ↑ 2(!̃u)
⇐
N under Assumption 4-5 in the main text. We

can also show that 1
N

1
TH

∑TH

s,t=1

∑↗
j=0

∥∥∥(̃s↑t+j(p)
∥∥∥
2 ∥∥∥(̃j(p)

∥∥∥
2

= Op(1) under the summability

condition. Part (c): First, note that we can write

E≃

∣∣∣∣∣
1⇐
N

N∑

i=1

(e≃i,the
≃
i,sh

↓ E≃(e≃i,the
≃
i,sh

))

∣∣∣∣∣

2

=
1

N

N∑

i,j=1

Cov≃(e≃i,the
≃
i,sh

, e≃j,the
≃
j,sh

)

=
1

N

N∑

i,j=1

↗∑

k1,k2,k3,k4=0

1̃i,k11̃i,k21̃j,k31̃j,k4Cov≃(u≃
i,th↑k1u

≃
i,sh↑k2 , u

≃
j,th↑k3u

≃
j,sh↑k4).

We can write ui,th = a→iηth =
∑N

l=1 ailηl,th , where a
→
i denotes the i-th row of !̃1/2

u . For simpler

notation, define Cov≃(e≃i,the
≃
i,sh

, e≃j,the
≃
j,sh

) = ’ij,thsh . We can rewrite ’ij,thsh as follows.

’ij,thsh =
↗∑

k1,k2,k3,k4=0

1̃i,k11̃i,k21̃j,k31̃j,k4

N∑

l1,l2,l3,l4=1

ai,l1ai,l2aj,l3aj,l4

↗ Cov≃(ηl1,th↑k1ηl2,sh↑k2 , ηl3,th↑k3ηl4,sh↑k4)  
A≃

.

Since ηl,th ⇔ i.i.d.(0, IN), we can consider A↖ based on the choice of li for i = 1, 2, 3, 4 and

th ↓ k1, sh ↓ k2, th ↓ k3 and sh ↓ k4. We need l1 = l2 = l3 = l4, l1 = l3 ⇒= l2 = l4, or l1 = l4 ⇒=

l2 = l3 for A↖ to be non-zero. If l1 = l2 = l3 = l4, we need th↓k1 = sh↓k2 = th↓k3 = sh↓k4,

th↓k1 = th↓k3 ⇒= sh↓k2 = sh↓k4, or th↓k1 = sh↓k4 ⇒= sh↓k2 = th↓k3. In this case, we have

A↖ = E≃(η4l,th)↓ 1 or 1. If l1 = l3 ⇒= l2 = l4, we need th ↓ k1 = th ↓ k3 and sh ↓ k2 = sh ↓ k4,

and we have A↖ = 1. Similarly, when l1 = l4 ⇒= l2 = l3, we need th ↓ k1 = sh ↓ k4 and

sh ↓ k2 = th ↓ k3, and this yields A↖ = 1. Letting η̄ ↙ max{E≃(η4l,th)↓ 1, 1}, we can bound
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the condition as follows.

1

T 2
H

TH∑

sh,th=1

1

N

N∑

i,j=1

’ij,thsh

↑ η̄

 ↗∑

k1,k2=0

1̃i,k11̃i,k21̃j,k11̃j,k2 + 1̃i,k1
˜i, k21̃j,t↑s+k21̃j,s↑t+k1


N∑

l=1

ai,laj,l

2

↑ η̄





 ↗∑

k=0

1̃i,k1̃j,k

2  N∑

l=1

ai,laj,l

2

  
=Aij↑(I)

+

 ↗∑

k=0

1̃i,k1̃j,s↑t+k

 ↗∑

k=0

1̃i,k1̃j,t↑s+k


N∑

l=1

ai,laj,l

2

  
=Aij↑(II)




.

Thus, the condition is bounded by

η̄


1

T 2

TH∑

t,s=1

1

N

N∑

i,j=1

Aij ↓ (I) +
1

T 2

TH∑

t,s=1

1

N

N∑

i,j=1

Aij ↓ (II)


.

We can show that
∑N

i,j=1 Aij ↓ (I) = Op(1) which is su&cient to show that the first term is

Op(1). Note that we can bound it further by Cauchy-Schwarz inequality as follows.

1

N

N∑

i,j=1

 ↗∑

k=0

1̃i,k1̃j,k

2  N∑

l=1

ai,laj,l

2

↑





1

N

N∑

i,j=1

 ↗∑

k=0

1̃i,k1̃j,k

4





1/2 


1

N

N∑

i,j=1


N∑

l=1

ai,laj,l

4





1/2

.

We can show that for some positive constant M , by repetitive application of Hölder’s in-

equality,

 ↗∑

k=0

1̃i,k1̃j,k

4

↑ M

 ↗∑

k=0

|1̃i,k1̃j,k|4


↑ M
↗∑

k=0

|1̃i,k|4|1̃j,k|4.

By Cauchy-Schwarz inequality, we can show that

1

N

N∑

i,j=1

 ↗∑

k=0

1̃i,k1̃j,k

4

↑ M


1

N

N∑

i=1

|1̃i,k|8
1/2 

1

N

N∑

j=1

|1̃j,k|8
1/2

.

We can show that this is Op(1) by Assumption 3 in the main text. We can also show that
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{
1
N

∑N
i,j=1(a

→
iaj)

4
}1/2

= Op(1), because we have


1

N

N∑

i,j=1

(a→iaj)
2

1/2

↑


tr(!̃4
u)/N ↑


{tr(!̃2

u)}2/N = →!̃u→/
⇐
N = Op(1).

We can obtain the final equality by Assumption 5 and by applying the arguments in GP

(2020) to !̃u such that →!̃u→ ↑ 2(!̃u)


rank(!̃u) ↑ 2(!̃u)
⇐
N (in their proof of Theorem

3.1). For the second term involved with Aij ↓ (II), by applying Cauchy-Schwarz inequality,

we have

1

T 2
H

TH∑

s,t=1

1

N

N∑

i,j=1

Aij ↓ (II) ↑





1

N

N∑

i,j=1


N∑

l=1

ai,laj,l

2





1/2 


1

N

N∑

i,j=1



 1

T 2
H

TH∑

s,t=1

 ↗∑

k=0

1̃i,k1̃j,s↑t+k

2



2



1/2

.

We can show that

{
1
N

∑N
i,j=1

(∑N
l=1 ai,laj,l

)2
}1/2

= Op(1) by using the similar arguments

above. For the remaining term, we use Cauchy-Schwarz inequality as follows.

1

N

N∑

i,j=1



 1

T 2
H

TH∑

s,t=1

 ↗∑

k=0

1̃i,k1̃j,s↑t+k

2



2

↑ 1

N

N∑

i,j=1

1

T 2
H

 ↗∑

k=0

|1̃i,k|2
1

TH

TH∑

s,t=1

|1̃j,s↑t+k|2
2

Since we can show that
∑↗

k=0 |1̃i,k|2 1
TH

∑TH

s,t=1 |1̃j,s↑t+k|2 = Op(1), the order of the above

term is Op(N/T 2
H).

Condition C.2*. Part (a): By Cauchy-Schwarz inequality, we can bound the condition

as follows.

∥∥∥∥∥
1

TH

TH∑

t=1

f̃sf̃
→
t⇀

≃
st

∥∥∥∥∥ ↑


1

TH

TH∑

s,t=1

→f̃sf̃ →
t→2

1/2 
1

TH

TH∑

s,t=1

|⇀≃
st|2

1/2

= Op(1).

We can show the term in the first parenthesis Op(1) since we can show that 1
TH

∑TH

t=1 →f̃t→4 =

Op(1) by using Lemma C.1-(i) in GP (2014) and use Cauchy-Schwarz inequality. The term

in the second parenthesis is Op(1) by Condition C.1*-(b). Part (b): For simpler notation,

in the remaining proof, we let 1̃i,j = 1̃i,j(pi) and (̃j = (̃j(p). Note that we can rewrite the
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condition as follows.

1

TH

TH∑

t=1

1

TH

TH∑

s,l=1

→f̃ →
sf̃l→2

1

N

N∑

i,j=1

Cov≃(e≃i,te
≃
i,s, e

≃
j,te

≃
j,l).

By considering the combination of i, j and t, s and l, the covariance term Cov≃(e≃i,te
≃
i,s, e

≃
j,te

≃
j,l)

can be further bounded as follows.

Cov≃(e≃i,te
≃
i,s, e

≃
j,te

≃
j,l) ↑ η̄






 ↗∑

k1,k2=0

1̃i,k11̃i,k21̃j,k11̃j,l↑s+k2


N∑

m=1

ai,maj,m

2

+

 ↗∑

k1,k2=0

1̃i,k11̃i,k21̃j,t↑s+k21̃j,l↑t+k1


N∑

m=1

ai,maj,m

2





= η̄(Bij ↓ (I) + Bij ↓ (II)),

where we denote Bij ↓ (I) =
(∑↗

k1,k2=0 1̃i,k11̃i,k21̃j,k11̃j,l↑s+k2

)(∑N
m=1 ai,maj,m

)2

and Bij ↓

(II) =
(∑↗

k1,k2=0 1̃i,k11̃i,k21̃j,t↑s+k21̃j,l↑t+k1

)(∑N
m=1 ai,maj,m

)2

. Then, using this bound on

the covariance term, the condition is bounded by the following equation.

η̄


1

T 2
H

TH∑

t,s,l=1

→f̃ →
sf̃l→2

1

N

N∑

i,j=1

Bij ↓ (I) +
1

T 2
H

TH∑

t,s,l=1

→f̃ →
sf̃l→2

1

N

N∑

i,j=1

Bij ↓ (II)



The first term in the square bracket can be bounded by Cauchy-Schwarz inequality as follows.

1

T 2
H

TH∑

t,s,l=1

→f̃ →
sf̃l→2

1

N

N∑

i,j=1

Bij ↓ (I) ↑ 1

TH

TH∑

t=1


1

TH

TH∑

s,l=1

→f̃ →
sf̃l→4

1/2


 1

TH

TH∑

s,l=1

∣∣∣∣∣
1

N

N∑

i,j=1

Bij ↓ (I)

∣∣∣∣∣

2



1/2

We can show that 1
TH

∑TH

s,l= →f̃ →
sf̃l→4 = Op(1) by applying Lemma C.1 in GP (2014) with

p = 8 (this can be verified under our Assumption 1 in the main text). To show that

1
TH

∑TH

s,l=1

∣∣∣ 1
N

∑N
i,j=1 Bij ↓ (I)

∣∣∣
2

= Op(1), we first bound it by Cauchy-Schwarz inequality as
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follows.

1

TH

TH∑

s,l=1

∣∣∣∣∣
1

N

N∑

i,j=1

Bij ↓ (I)

∣∣∣∣∣

2

↑


1

N

N∑

i,j=1

(a→iaj)
2



 1

N

N∑

i,j=1

1

TH

TH∑

s,l=1

 ↗∑

k1,k2=0

1̃i,k11̃i,k21̃j,k11̃j,l↑s+k2

2


 .

As in the proof of Condition C.1*-(c), we can show that 1
N

∑N
i,j=1(a

→
iaj)

2 = Op(1). First, note

that by using Hölder’s inequality, we can show that
(∑↗

k1,k2=0 1̃i,k11̃i,k21̃j,k11̃j,l↑s+k2

)2

↑ M

∑↗
k1,k2=0 |1̃i,k11̃i,k21̃j,k11̃j,l↑s+k2 |2, for some positive constant M . Then, we apply Cauchy-

Schwarz inequality and Hölder’s inequality to obtain the following inequality. For some

positive constant M ,

1

N

N∑

i,j=1

1

TH

TH∑

s,l=1

 ↗∑

k1,k2=0

1̃i,k11̃i,k21̃j,k11̃j,l↑s+k2

2

↑ M


1

N

N∑

i=1

↗∑

k1=0

|1̃i,k1 |4
↗∑

k2=0

|1̃i,k2 |4
1/2



 1

N

N∑

j=1

↗∑

k1=0

|1̃j,k1 |4
 ↗∑

k2=0

1

TH

TH∑

s,l=1

|1̃j,l↑s+k2 |2
2




1/2

.

Note that 1
TH

∑TH

s,l=1 |1̃j,l↑s+k2 |2 =
∑TH↑1

ϱ=0

(
1↓ ϱ

TH

)
|1̃j,ϱ+k2 |2 ↑

∑↗
ϱ=0 |1̃j,ϱ+k2 |2. Then, since

∑↗
k2=0

∑↗
ϱ=0 |1̃j,ϱ+k2 |2 =

∑↗
k3=0(k3+1)|1̃j,k3 |2, we can show that

(∑↗
k2=0

1
TH

∑TH

s,l=1 |1̃j,l↑s+k2 |2
)2

↑

M1

∑↗
k3=0(k3 + 1)2|1̃j,k3 |4 for some positive constant M1. Therefore, we can show that the

second term is Op(1) by Assumption 3 with r = 2. By Assumption 3, we can show that

1
N

∑N
i=1

∑↗
k1=0 |1̃i,k1 |4

∑↗
k2=0 |1̃i,k2 |4 = Op(1) and we can also show that the remaining term in

the above inequality is Op(1). Next, we show that 1
TH

∑TH

s,l=1

∣∣∣ 1
N

∑N
i,j=1 Bij ↓ (I)

∣∣∣
2

= Op(1).

By applying Cauchy-Schwarz inequality repetitively, it is su&cient to show that

1

N

N∑

i,j=1

1

TH

TH∑

s,l=1

∣∣∣∣∣
1

TH

TH∑

t=1

 ↗∑

k1,k2=0

1̃i,k11̃i,k21̃j,t↑s+k21̃j,l↑t+k1

∣∣∣∣∣

2

↑ M
1

TH



 1

N

N∑

i,j=1

∣∣∣∣∣
1

TH

TH∑

t,l=1

↗∑

k=0

|1̃i,k1̃j,l↑t+k|2
∣∣∣∣∣

2



1/2 

 1

N

N∑

i,j=1

∣∣∣∣∣
1

TH

TH∑

t,s=1

↗∑

k2=0

|1̃i,k1̃j,t↑s+k|2
∣∣∣∣∣

2



1/2

= Op(1).
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In fact, we can use Cauchy-Schwarz inequality and Assumption 3 to show that the term is

Op(1). For example, we can show that

1

N

N∑

i,j=1

∣∣∣∣∣
1

TH

TH∑

t,l=1

↗∑

k=0

|1̃i,k1̃j,l↑t+k|2
∣∣∣∣∣

2

=
1

N

N∑

i,j=1

∣∣∣∣∣

↗∑

k=0

|1̃i,k|2
1

TH

TH∑

t,l=1

|1̃j,l↑t+k|2
∣∣∣∣∣

2

↑

M1

1

N

N∑

i=1

↗∑

k=0

|1̃i,k|8
1/2 

M2
1

N

N∑

j=1

↗∑

k=0

|(1 + k)4|1̃j,k|8
1/2

= Op(1),

for some positive constants M1 and M2. We obtain the final equality by Assumption 3 with

r = 4. Part (c): First, note that we can write the condition as follows.

E≃

∥∥∥∥∥
1⇐
THN

TH∑

t=1

N∑

i=1

f̃tω̃
→
ie

≃
i,t

∥∥∥∥∥

2

=
1

TH

TH∑

t,s=1

tr(f̃tf̃
→
s)E

≃


e≃→s ”̃⇐
N

”̃→e≃t⇐
N



Since E≃
(

e↓→s !̃↓
N

!̃→e↓
t↓

N

)
= E≃

[
tr
(

!̃→e↓
t↓

N

e↓→s !̃↓
N

)]
, we focus on E≃(e≃t e

≃→
s ). Under vector MA(↘)

representation of e≃t , we can write it as follows.

E≃(e≃t e
≃→
s ) =

↗∑

k1,k2=0

(̃k1E
≃(u≃

t↑k1u
≃→
s↑k2)(̃k2 =

↗∑

k=0

(̃k!̃u(̃
→
s↑t+k

By plugging this back into the condition and using Cauchy-Schwarz inequality,

E≃

∥∥∥∥∥
1⇐
THN

TH∑

t=1

N∑

i=1

f̃tω̃
→
ie

≃
i,t

∥∥∥∥∥

2

=
1

TH

TH∑

t,s=1

tr(f̃tf̃
→
s)tr


”̃→ ∑↗

k=0 (̃k!̃u(̃→
s↑t+k”̃

N



↑


1

TH

TH∑

t,s=1

|tr(f̃tf̃ →
s)|2

1/2 
1

TH

TH∑

t,s=1

∣∣∣tr(#̃s↑t)
∣∣∣
2
1/2

,

where we denote #̃s↑t = 1
N ”̃→

(∑↗
k=0 (̃k!̃u(̃→

s↑t+k

)
”̃. We can show that the first term is

Op(1) by Assumption 1 and using the results in Lemma C.1 in GP (2014). For the second

term, it is su&cient to show that tr(#̃t) = Op(1). This is implied by Condition C.6*-(b),
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which will be verified. Part (d): We can rewrite the condition as follows.

1

TH

TH∑

t=1

E≃

∥∥∥∥∥
”̃→e≃t⇐
N

∥∥∥∥∥

2

=
1

TH

TH∑

t=1

E≃


tr


”̃→e≃t e

≃→
t ”̃

N


=

1

TH

TH∑

t=1

tr


”̃→E≃(e≃t e

≃→
t )”̃

N



As we have shown previously in the proof of Condition C.2*-(c), we can write E≃(e≃t e
≃→
t ) =

∑↗
k=0 (̃k!̃u(̃→

k. Therefore, the condition is 1
TH

∑TH

t=1 tr
(

!̃→ ∑↔
k=0 ”̃k#̃u”̃→

k
!̃

N

)
, and this is Op(1)

given that tr(#̃0) = Op(1). Part (e): To verify this condition, we use r = 1 (recall that r is

the number of factors) for a simpler notation. Therefore, it su&ces to show that V ar≃(A≃) =

op(1), where A≃ = 1
TH

∑TH

t=1

(
!̃→e↓

t↓
N

)(
e↓→
t
!̃↓
N

)
. Note that

V ar≃(A≃) =
1

T 2
H

TH∑

t,s=1

1

N2

N∑

i,j,k,l

ω̃iω̃jω̃kω̃lCov≃(e≃i,te
≃
j,t, e

≃
l,se

≃
k,s)

↑ 2η̄
1

T 2
H

TH∑

t,s=1

1

N2

N∑

i,j,k,l

ω̃iω̃jω̃kω̃l

 ↗∑

p1,p2=0

1̃i,p11̃j,p21̃l,s↑t+p11̃k,s↑t+p2



↗


N∑

m1,m2=1

ai,m1aj,m2al,m1ak,m2



= 2η̄
1

T 2
H

TH∑

t,s=1


1

N

N∑

i,l=1

ω̃iω̃l

 ↗∑

p1=0

1̃i,p11̃l,s↑t+p1


N∑

m1=1

ai,m1al,m1

2

= 2η̄
1

T 2
H

TH∑

t,s=1


”̃→ ∑↗

p=0 (̃p!̃u(̃s↑t+p”̃

N

2

,

where we obtain the second inequality by taking account of the covariance term given the

combination of i, j, k, and l and t and s, similar to the proof of Condition C.1*-(c). Note

that given that tr(#̃s↑t) = Op(1), we can show that 1
TH

∑TH

t,s=1 #̃
2
s↑t = Op(1). Therefore,

V ar≃(A≃) = Op(1/TH) = op(1). The proof to verify Condition C.3* is very similar to the

proof of Condition C.2*. For example, Condition C.3*-(b) and (c) can be verified given that

tr(#̃ϱ ) = Op(1) with ϑ ⇒= 0.

Condition C.4* Part (a): Given that ϖ≃t and e≃t↑j/m are independent in Assumption 2,

38



it is su&cient to show that

1

T

T∑

t=1

1

NT

T∑

s,l=1

N∑

i=1

Cov≃(e≃i,t↑j/me
≃
i,s↑j/m, e

≃
i,t↑j/me

≃
i,l↑j/m) = Op(1).

We show a similar term is Op(1) in Condition C.2*-(b). Part (b): Similarly, given the

independence of ϖ≃t and e≃i,t↑j/m, it su&ces to show that E≃
∥∥∥∥

1↓
T

∑T
t=1

!̃→e↓
t↑j/m↓
N

∥∥∥∥
2

= Op(1),

which is verified in Condition C.2*-(c). Condition C.5* and Condition C.6*-(a) can

be verified using the arguments in GP (2014), since ϖ≃t is constructed in the same way.

Condition C.6*- Part (b): Note that #̃k can be rewritten as follows.

#̃k =
1

TH

TH∑

t=1

1

N
”̃→

↗∑

p=0

(̃p!̃u(̃
→
p↑k”̃ =

”̃→!̃e,k”̃

N
,

where we let !̃e,k ≃
∑↗

p=0 (̃p!̃u(̃→
p↑k. Let #̄k = !→#̃e,k!

N . Then, by adding and subtracting

appropriately, we have the following:

#̃k ↓H0#kH
→
0 = #̃k ↓H0#̄kH

→
0 +H0#̄kH

→
0 ↓H0#kH

→
0

= (#̃k ↓H0#̄kH
→
0)  

⇒D1

+H0(#̄k ↓ #k)H
→
0  

⇒D2

.

We can show that D1 and D2 are op(1). In order to show that D2 = op(1), it is su&cient to

show that !̃e,k ↓ !e,k ↔ 0, where !e,k ≃
∑↗

p=0 (p!u(→
p↑k with !u = E(utu→

t). Note that we

can expand !̃e,k ↓ !e,k as follows.

!̃e,k ↓ !e,k =
↗∑

p=0

((̃p ↓(p)!̃u(̃p↑k

  
D21

+
↗∑

p=0

(p(!̃u ↓ !u)(̃p↑k

  
D22

+
↗∑

p=0

(p!u((̃p↑k ↓(p↑k)

  
D23

.

We can show that D22 = op(1) since 2(!̃u ↓ !u)
p↓↔ 0 under Assumptions 4-5 using the

arguments in GP (2020). We can show that D21 and D23 are of order op(1) by Lemma D.5.
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Next, we show that D1 is op(1). We can decompose D1 further as follows.

D1 =
1

N
(”̃↓ ”H↑1)→!̃e,k(”̃↓ ”H↑1)

  
D11

+
1

N
H↑1→”→!̃e,k(”̃↓ ”H↑1)

  
D12

+
1

N
(”̃↓ ”H↑1)→!̃e,k”H

↑1

  
D→

12

.

D11 = op(1) by applying Cauchy-Schwarz inequality as follows.

→D11→ ↑
∥∥∥∥

1⇐
N
(”̃↓ ”H↑1)

∥∥∥∥
2

  
=op(1)

∥∥∥∥∥

↗∑

p=0

(̃p!̃u(̃
→
p↑k

∥∥∥∥∥
  

=Op(1)

= op(1),

where we use the fact that

∥∥∥∥∥

↗∑

p=0

(̃p!̃u(̃
→
p↑k

∥∥∥∥∥ ↑

∥∥∥∥∥

↗∑

p=0

(̃p(̃
→
p↑k

∥∥∥∥∥

∥∥∥!̃u

∥∥∥ ↑
↗∑

p=0

∥∥∥(̃p(̃
→
p↑k

∥∥∥ 2(!̃u) = Op(1),

and use the arguments in GP (2020). Since we have

→D12→ ↑ →H↑1→
∥∥∥”/

⇐
N
∥∥∥
∥∥∥!̃e,k

∥∥∥

∥∥∥∥
1⇐
N
(”̃↓ ”H↑1)

∥∥∥∥
2
1/2

,

we can show that this is op(1) using similar arguments as we did for D11.

E Additional simulation results

E.1 Simulation: results of DGP 1 and 2 of the factor-MIDAS

regression model

Table 1 presents the results of DGP 1 and 2 in each panel. The results indicate that there

is no bias when using the true factor, however, a bias does exist when using the estimated

factor as a regressor. Increasing the sample size in both cross-sectional and time series

dimensions results in a decrease in bias. If the cross-sectional dimension is small (50 and

100), the plug-in bias tends to overestimate the bias size. Both bootstrap methods perform
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similarly and replicate bias size well. When no method is used to correct the bias, size

distortion occurs in terms of coverage rates. The plug-in bias somewhat recovers the size

distortion, but bootstrap methods outperform the plug-in bias method. The results of DGP

1 and DGP 2 are similar, and both bootstrap methods are valid for these scenarios since the

idiosyncratic error terms are randomly generated from a standard normal distribution.

E.2 Simulation experiment: increase in autoregressive coe!cient

Table 2 shows the bias and 95% coverage rate of ↽ when the idiosyncratic error term follows

simple AR (1) process as:

ei,th = 2iei,th↑1 + vi,th for th = 1, . . . , TH

where vi,th is i.i.d. randomly generated from N(0, 1). We let 2i indicate the auto-regressive

coe&cient, which implies the persistence of auto-regressive process. For simplicity, we impose

that each variable shares same autoregressive coe&cient, 2i = 2. In Table 2, we compare

the results by varying persistence. We increase the coe&cient from 0 to 0.7. When the

persistence in the idiosyncratic error term is 2 = 0.5, the bias is around twice bigger than

the bias where there is no serial-dependence. Moreover, the size of bias increase as the

persistence increases.

E.3 Simulation experiment: unrestricted MIDAS regression model

Table 3-5 show the performance of bootstrap methods (wild bootstrap and AR-sieve +

CSD bootstrap method) as well as plug-in bias estimation method under the framework of

unrestricted MIDAS regression model. We consider the unrestricted MIDAS regression with
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Table 1: DGP 1 & DGP 2 - Bias and coverage rate of 95% CIs for ↽

N = 50 N = 100 N = 200

T = 50 100 200 50 100 200 50 100 200

TH = 150 300 600 150 300 600 150 300 600

DGP 1:
homo &
homo

bias

True Factor -0.01 -0.01 0.00 -0.02 -0.01 0.00 0.00 0.00 0.00

Estimated Factor -0.32 -0.31 -0.29 -0.20 -0.17 -0.16 -0.12 -0.10 -0.08

Plug-in -0.38 -0.34 -0.32 -0.21 -0.19 -0.18 -0.10 -0.10 -0.09

WB -0.25 -0.24 -0.23 -0.16 -0.15 -0.14 -0.11 -0.09 -0.08

AR-sieve+CSD -0.24 -0.24 -0.23 -0.16 -0.15 -0.14 -0.10 -0.09 -0.08

95% coverage rate

Estimated Factor 84.8 82.0 73.9 89.6 90.5 88.3 91.7 92.7 93.4

Plug-in 87.6 89.1 89.3 90.4 92.1 92.4 91.2 92.7 93.6

WB 94.1 94.7 93.3 95.0 95.6 94.5 92.7 95.4 94.9

AR-sieve+CSD 95.8 94.9 92.4 95.8 96.1 95.0 96.0 96.3 95.3

DGP 2:
hetero &
homo

bias

True Factor -0.01 0.00 0.00 0.00 0.01 -0.01 0.01 -0.01 0.00

Estimated Factor -0.34 -0.30 -0.29 -0.19 -0.16 -0.16 -0.10 -0.10 -0.09

Plug-in -0.37 -0.34 -0.32 -0.20 -0.19 -0.18 -0.10 -0.10 -0.09

WB -0.24 -0.24 -0.23 -0.16 -0.15 -0.14 -0.10 -0.09 -0.08

AR-sieve+CSD -0.24 -0.24 -0.23 -0.16 -0.15 -0.14 -0.10 -0.09 -0.08

95% coverage rate

Estimated Factor 78.1 76.2 68.4 85.9 88.1 86.2 88.7 91.5 91.6

Plug-in 82.7 86.8 88.3 86.6 89.8 92.5 88.9 92.3 92.5

WB 91.7 93.0 93.1 92.6 93.3 94.2 91.0 94.4 94.0

AR-sieve+CSD 92.5 92.9 92.2 94.0 95.2 93.8 93.5 94.8 94.8

In DGP 1, both error terms are homoskedastic. In DGP 2, MIDAS regression error terms are heteroskedastic and
idiosyncratic error terms are homoskedastic. The results of coverage rates, when we use the estimated factors and plug-in
bias, are based on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile t method.

a single factor as follows.

yt = ↽ +
K∑

j=1

ςkft↑j/3 + ϖt

Xt↑k/3 = ”ft↑k/3 + et↑k/3,
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Table 2: Bias and 95% coverage rate of ↽

N TH
2 = 0 2 = 0.5 2 = 0.6 2 = 0.7

bias 95% bias 95% bias 95% bias 95%

50

150 -0.3380 84.7 -0.5887 68.02 -0.6808 60.42 -0.7993 49.18

300 -0.3100 81.76 -0.5362 57.94 -0.6197 48.16 -0.7278 35.18

600 -0.2890 74 -0.4970 40.96 -0.5746 29.32 -0.6761 17.2

100

150 -0.2022 89.82 -0.3763 83.18 -0.4450 79.34 -0.5372 72.62

300 -0.1709 90.72 -0.3157 81.1 -0.3729 75.68 -0.4502 67.1

600 -0.1565 88.7 -0.2849 75.36 -0.3358 67.44 -0.4047 56.16

200

150 -0.1343 91.48 -0.2639 87.6 -0.3163 85.38 -0.3890 81.8

300 -0.1027 92.5 -0.1996 89.18 -0.2393 87.28 -0.2943 83.54

600 -0.0865 92.44 -0.1647 88.02 -0.1968 85.48 -0.2411 80.7

for k = 0, 1, 2 and t = 1, . . . , T . The simulation design is identical to that in Section 4 in the

main text: ft↑k/m ⇔ i.i.d. N(0, 1) and ωi ⇔ i.i.d. U [0, 1]. We consider six data generating

processes as detailed in Table 1 in the main text. In this setup, yt is predicted using six

lags of the factor (K = 6). We set ↽ = 0 and ςk = ςk with ς = 0.8. The estimation

procedure is similar to restricted MIDAS, which proceeds in two steps: we first estimate the

factors from Xt↑k/m and then in the second step, we regress yt on the temporally aggregated

estimated factors up to six lags. We report the bias in ς1 associated with the true factor,

estimated factor, plug-in estimation method, as well as two bootstrap methods: the wild

bootstrap method and the AR-sieve + CSD bootstrap method. In addition, we provide the

95% coverage rates associated with the estimated factor, plug-in estimation method, and

both bootstrap methods. Note that the wild bootstrap is not valid in DGPs 4 to 6.

DGPs 1 to 3 yield comparable outcomes: the plug-in estimation method and the two

bootstrap methods are perform similarly, and e)ectively capture the size of the bias. Re-

garding the coverage rate, the bootstrap methods outperform the plug-in estimation method.
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In DGP 4, where the idiosyncratic error terms of the factor model are serially dependent,

the AR-sieve + CSD bootstrap method outperforms the plug-in estimation method in terms

of replicating the bias and correcting the distortion induced by the bias. In DGP 5, the

plug-in estimation method performs the best in estimating the bias size. In terms of cover-

age rate, the plug-in estimation method outperforms the wild bootstrap method when N is

small, while the AR-sieve + CSD bootstrap method outperforms other two methods across

all sample sizes. Finally, in DGP 6, both the plug-in and the AR-sieve + CSD bootstrap

methods replicate the bias size well, with the AR-sieve + CSD bootstrap method performing

the best at recovering the distortion in the coverage rate.

44



Table 3: DGP 1 & DGP 2 - Bias and coverage rate of 95% CIs for ↽

N = 50 N = 100 N = 200

T = 50 100 200 50 100 200 50 100 200

TH = 150 300 600 150 300 600 150 300 600

DGP 1:
homo &
homo

bias

True Factor 0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 0.00 0.00

Estimated Factor -0.10 -0.10 -0.09 -0.07 -0.05 -0.05 -0.04 -0.03 -0.03

Plug-in -0.09 -0.08 -0.08 -0.05 -0.05 -0.04 -0.03 -0.02 -0.02

WB -0.08 -0.08 -0.07 -0.05 -0.05 -0.04 -0.04 -0.03 -0.03

AR-sieve+CSD -0.08 -0.08 -0.07 -0.05 -0.05 -0.04 -0.04 -0.03 -0.03

95% coverage rate

Estimated Factor 86.8 81.5 71.0 91.6 90.6 88.1 93.3 94.1 93.6

Plug-in 89.7 89.7 90.0 92.1 92.6 92.5 93.2 94.0 94.4

WB 94.3 93.5 92.6 95.3 94.5 93.8 95.7 95.3 95.1

AR-sieve+CSD 94.4 93.1 92.6 95.6 94.4 94.0 95.6 95.3 95.1

DGP 2:
hetero &
homo

bias

True Factor -0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

Estimated Factor -0.11 -0.10 -0.09 -0.07 -0.05 -0.05 -0.04 -0.03 -0.03

Plug-in -0.09 -0.08 -0.08 -0.05 -0.05 -0.04 -0.03 -0.02 -0.02

WB -0.08 -0.08 -0.07 -0.05 -0.05 -0.04 -0.03 -0.03 -0.03

AR-sieve+CSD -0.08 -0.08 -0.07 -0.05 -0.05 -0.04 -0.03 -0.03 -0.03

95% coverage rate

Estimated Factor 78.0 74.5 65.4 86.6 87.3 86.2 89.2 91.6 92.0

Plug-in 84.3 86.8 89.3 88.2 90.2 91.5 89.7 92.1 93.7

WB 90.7 91.2 91.7 92.5 92.7 92.8 92.6 93.9 94.6

AR-sieve+CSD 90.9 91.3 91.5 92.8 92.7 93.1 92.6 93.7 94.5

In DGP 1, both error terms are homoskedastic. In DGP 2, MIDAS regression error terms are heteroskedastic and
idiosyncratic error terms are homoskedastic. The results of coverage rates, when we use the estimated factors and plug-in
bias, are based on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile t method.

F Other empirical result

In Table 6, we present the results after excluding the COVID pandemic period. The results

are similar to Table 5 in the main text. When using the bootstrap method, the confidence
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Table 4: DGP 3 & DGP 4 - Bias and coverage rate of 95% CIs for ↽

N = 50 N = 100 N = 200

T = 50 100 200 50 100 200 50 100 200

TH = 150 300 600 150 300 600 150 300 600

DGP 3:
hetero &
hetero

bias

True Factor -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00

Estimated Factor -0.11 -0.11 -0.10 -0.07 -0.05 -0.05 -0.04 -0.03 -0.03

Plug-in -0.10 -0.09 -0.09 -0.05 -0.05 -0.05 -0.03 -0.03 -0.03

WB -0.09 -0.09 -0.08 -0.06 -0.05 -0.05 -0.04 -0.03 -0.03

AR-sieve+CSD -0.09 -0.08 -0.08 -0.06 -0.05 -0.05 -0.04 -0.03 -0.03

95% coverage rate

Estimated Factor 75.9 72.7 61.4 85.3 87.6 84.4 89.2 91.6 91.3

Plug-in 84.6 87.6 88.5 87.7 90.5 91.8 89.3 92.2 93.4

WB 91.1 92.0 91.7 91.8 92.7 93.3 92.9 93.6 94.2

AR-sieve+CSD 91.1 91.7 90.6 91.9 92.6 93.1 92.7 93.9 94.1

DGP 4:
hetero &

AR

bias

True Factor -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00

Estimated Factor -0.15 -0.14 -0.13 -0.10 -0.07 -0.07 -0.06 -0.05 -0.04

Plug-in -0.08 -0.08 -0.08 -0.05 -0.05 -0.05 -0.03 -0.03 -0.02

WB -0.08 -0.08 -0.08 -0.05 -0.05 -0.05 -0.04 -0.03 -0.03

AR-sieve+CSD -0.10 -0.10 -0.09 -0.07 -0.07 -0.06 -0.05 -0.04 -0.04

95% coverage rate

Estimated Factor 69.6 63.1 48.7 81.2 83.3 78.9 87.1 89.7 89.0

Plug-in 80.1 83.1 81.4 85.0 89.3 89.6 88.1 91.2 92.4

WB 87.7 88.1 85.0 90.6 92.2 91.3 92.3 93.3 93.6

AR-sieve+CSD 89.7 90.5 88.3 92.0 93.0 92.8 92.6 93.9 94.2

In DGP 3, both error terms are heteroskedastic. In DGP 4, the idiosyncratic error term is generated as the autoregressive
process of lag 1 for each variable and with heteroskedastic. For coverage rates, the results for estimated factors and plug-
ins are based on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile t method.

intervals associated with the factors shift. However, the bias does not have a significant

impact on the estimates for the lags of the dependent variable. Additionally, it is worth

noting that as we exclude the COVID period, the sign of the estimates associated with the
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Table 5: DGP 5 & DGP 6 - Bias and coverage rate of 95% CIs for ↽

N = 50 N = 100 N = 200

T = 50 100 200 50 100 200 50 100 200

TH = 150 300 600 150 300 600 150 300 600

DGP 5:
hetero &
CSD

bias

True Factor -0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

Estimated Factor -0.09 -0.09 -0.09 -0.06 -0.05 -0.05 -0.03 -0.03 -0.02

Plug-in -0.07 -0.06 -0.06 -0.04 -0.04 -0.04 -0.02 -0.02 -0.02

WB -0.03 -0.03 -0.03 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01

AR-sieve+CSD -0.05 -0.05 -0.05 -0.03 -0.03 -0.03 -0.02 -0.02 -0.02

95% coverage rate

Estimated Factor 80.9 77.1 67.6 87.8 88.1 86.8 90.1 91.9 92.7

Plug-in 84.6 86.4 86.3 88.5 90.2 91.3 89.8 92.5 93.6

WB 89.3 87.5 82.7 92.1 91.7 91.0 92.9 93.7 94.2

AR-sieve+CSD 90.7 90.3 88.8 92.6 92.5 92.7 92.8 93.9 94.7

DGP 6:
hetero &
CSD+AR

bias

True Factor -0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

Estimated Factor -0.12 -0.12 -0.12 -0.07 -0.06 -0.06 -0.04 -0.04 -0.03

Plug-in -0.06 -0.06 -0.06 -0.04 -0.04 -0.03 -0.02 -0.02 -0.02

WB -0.03 -0.03 -0.03 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01

AR-sieve+CSD -0.06 -0.06 -0.06 -0.04 -0.04 -0.04 -0.03 -0.02 -0.02

95% coverage rate

Estimated Factor 76.5 70.6 57.1 85.8 85.8 83.0 88.7 90.7 90.9

Plug-in 82.3 82.3 79.2 86.9 89.4 89.4 89.2 91.8 93.4

WB 86.3 82.1 73.2 90.7 89.9 88.0 92.3 92.9 93.4

AR-sieve+CSD 89.6 87.9 84.8 92.1 92.2 91.4 92.8 93.7 94.5

In DGP 5 and 6, both error terms are heteroskedastic. In DGP 5, the idiosyncratic error term contains the cross-sectional
dependence. In DGP 6, we impose the dependence in both dimensions for the idiosyncratic error terms. For coverage
rates, the results for estimated factors and plug-in are based on asymptotic theory. The bootstrap coverage rates use the
bootstrap equal-tailed percentile t method.

two factors is reversed. Previously, the slope coe&cient for the aggregated factors was pos-

itive, whereas it becomes negative without the COVID period. This suggests that monthly

information during the COVID period has a considerable influence on nowcasting the GDP
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growth rate.

Table 6: Estimation result of long period (1984 Q1 - 2019 Q4)

h = 2 h = 1 h = 0

0.87 0.92 0.88

constant

Asymptotic 0.70 1.03 0.79 1.06 0.75 1.02

WB 0.76 1.03 0.84 1.09 0.77 1.02

AR sieve+CSD 0.79 1.05 0.86 1.11 0.79 1.04

-1.10 -1.34 -1.27

first factor

Asymptotic -1.48 -0.73 -1.67 -1.01 -1.53 -1.00

WB -1.52 -0.92 -1.78 -1.20 -1.61 -1.12

AR sieve+CSD -1.56 -0.98 -1.83 -1.27 -1.66 -1.16

0.09 -0.14 -0.01

second
factor

Asymptotic -0.67 0.84 -0.35 0.07 -0.58 0.56

WB -0.13 0.26 -0.40 0.03 -0.23 0.14

AR sieve+CSD -0.17 0.24 -0.48 0.02 -0.28 0.13

-0.11 -0.19 -0.17

yt↑1

Asymptotic -0.24 0.03 -0.31 -0.06 -0.30 -0.04

WB -0.26 0.00 -0.33 -0.10 -0.31 -0.06

AR sieve+CSD -0.26 -0.01 -0.35 -0.11 -0.31 -0.06

-0.06 -0.09 -0.04

yt↑2

Asymptotic -0.24 0.12 -0.24 0.05 -0.17 0.09

WB -0.24 0.08 -0.27 0.03 -0.17 0.08

AR sieve+CSD -0.24 0.08 -0.27 0.02 -0.18 0.07

-0.16 -0.14 -0.15

23

Asymptotic -0.29 -0.02 -0.26 -0.03 -0.26 -0.03

WB -0.28 -0.04 -0.26 -0.04 -0.26 -0.04

AR sieve+CSD -0.29 -0.04 -0.27 -0.05 -0.26 -0.04

The interval based on the asymptotic theory is obtained by adding and subtracting 1.645
times the heteroskedasticity robust standard errors. The confidence intervals based on
bootstrap methods are obtained with equal-tailed bootstrap intervals with a bootstrap
number 4999. WB indicates that we use wild bootstrap and AR sieve + CSD indicates
that we use the bootstrap algorithm described in Section 3 in the main text.
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