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Abstract

Factor-MIDAS regression models are often used to forecast a target variable using common

factors extracted from a large panel of predictors observed at higher frequencies. In the paper,

we derive the asymptotic distribution of the factor-MIDAS regression estimator coefficients.

We show that there exists an asymptotic bias because the factors are estimated. However,

the fact that factors and their lags are aggregated in a MIDAS regression model implies that

the asymptotic bias depends on both serial and cross-sectional dependence in the idiosyncratic

errors of the factor model. Thus, bias correction is more complicated in this setting. Our second

contribution is to propose a bias correction method based on a plug-in version of the analytical

formula we derive. This bias correction can be used in conjunction with asymptotic normal

critical values to produce asymptotically valid inference. Alternatively, we can use a bootstrap

method, which is our third contribution. We show that correcting for bias is important in

simulations and in an empirical application to forecasting quarterly U.S. real GDP growth rates

using monthly factors.

1



1 Introduction

MIDAS (Mixed-Data Sampling) regressions are popular tools in forecasting. Originally proposed

by Ghysels et al. (2004; 2005; 2006; 2007), these models combine predictors observed at high

frequencies by relying on a parametric temporal aggregation function to forecast a target variable

sampled at a lower frequency. Originally proposed to handle financial variables, they have become

standard tools in macroeconomic forecasting (see e.g., Clements and Galvão (2008; 2009), which

relies on MIDAS autoregressions for nowcasting U.S. real output growth).

More recently, standard MIDAS regressions have been generalized to “factor-MIDAS regres-

sions” (or “factor-augmented MIDAS regression models”) by including as predictors common fac-

tors extracted from a large panel of time series sampled at a higher frequency than the target

variable. By combining with the dimension reduction properties of factor models, factor-MIDAS

regressions are powerful tools for forecasting and they are often used in empirical applications (see

for instance Marcellino and Schumacher (2010), Monteforte and Moretti (2013), Kim and Swanson

(2018), and Ferrara and Marsilli (2019)). Estimation of factor-MIDAS regressions is complicated

by the fact that some of the predictors are latent common factors. It typically proceeds in two

steps: we first extract the common factors using principal component analysis, and then estimate

the model using nonlinear least squares, where the estimated factors are aggregated by a temporal

aggregation scheme.

Although factor-MIDAS regressions are empirically popular, no formal inference methods have

been proposed in the literature. Our paper proposes inference methods for factor-MIDAS regression

models and provides the theoretical justification for these methods. The main contributions of this

paper are as follows. Firstly, the asymptotic distribution of the factor-MIDAS regression estimators

is derived. We show that there is an asymptotic bias in the second step due to the estimation of

the factors in the first step. Secondly, we propose two inference methods accounting for this bias:

a bias correction method based on the bias formula we derive and a bootstrap method.

Our work is related to the existing literature on factor-augmented regression models (without

mixed frequencies). Bai and Ng (2006) first studied the “generated regressor” problem in standard

factor-augmented regression models. They showed that inference for the regression coefficients

could proceed as if the estimated factors were observed if the cross-sectional dimension N was

sufficiently large relative to the time dimension T , more precisely if
√
T/N → 0. More recently,
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Gonçalves and Perron (2014) (henceforth, GP (2014)) showed that an asymptotic bias may appear

under more relaxed assumption (i.e. if
√
T/N → c, 0 < c < ∞). We extend these results to

factor-MIDAS regression models. This is not a trivial extension for two main reasons. First, the

estimation problem in a factor-MIDAS regression model is more complicated because the predictors

include latent factors (and their lags) sampled at a different frequency than a variable of interest.

In addition, the second step is based on nonlinear least squares (rather than OLS) because of a

temporal aggregation, and this complicates the asymptotic analysis. In particular, whereas the

bias derived in Gonçalves and Perron (2014) depends only on the cross-sectional dependence, the

asymptotic bias of a factor-MIDAS regression model depends on both serial and cross-sectional

dependence in the idiosyncratic errors. Consequently, different methods of inference are required

for factor-MIDAS regressions.

We consider two different methods of inference in this context. The first is an analytical bias

correction that can be used along with asymptotic normal critical values. Our plug-in bias correction

is robust to both serial and cross-sectional dependence of unknown form in the idiosyncratic errors.

It is based on the asymptotic formula of the bias we derive, replacing unknown parameters with

consistent estimators. As in Ludvigson and Ng (2009), who also propose a bias correction formula

for the standard factor-augmented regression model without mixed frequencies, we rely on the

CS-HAC estimator of Bai and Ng (2006) to account for cross-sectional dependence. However, our

estimator is more complex since it also requires robustness to serial dependence.

Our second method of inference is based on the bootstrap. The bootstrap has two significant

advantages: it can perform better in finite samples, and it avoids the explicit estimation of the

bias term which can be complicated in this context. We propose a bootstrap procedure inspired by

Gonçalves and Perron (2014), which is a residual-based bootstrap. Although the method is inspired

by Gonçalves and Perron (2014), the asymptotic justification is substantially more complicated.

More importantly, the need to mimic the asymptotic bias requires the bootstrap to be robust to

both serial and cross-sectional dependence. Since none of the existing bootstrap methods in the

literature allows for both forms of dependence, we propose a new bootstrap method for factor

models that has these properties. Our method is based on an application of the sieve bootstrap to

the idiosyncratic residuals of each time series in the panel data model, where the corresponding in-

novations are resampled using the cross-sectional dependent bootstrap proposed by Gonçalves and
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Perron (2020). We show that this bootstrap method is asymptotically valid when each idiosyncratic

error in the factor model is generated by an AR(∞) process with innovations that are potentially

cross-sectionally correlated across the panel. A special case of this new bootstrap method is con-

sidered by Gonçalves, Koh, and Perron (2024) when testing for the number of common factors in

group factor models (as proposed by Andreou, Gagliardini, Ghysels, and Rubin (2019)).

We illustrate the good finite sample performance of the plug-in bias estimator and the bootstrap

using Monte Carlo simulations. In particular, the results show that it is important to correct the

bias due to the estimation of the factors in the first step. Although both the plug-in bias correction

and the bootstrap methods replicate the bias well, the bootstrap outperforms the plug-in bias

estimator by further reducing the coverage rate distortions. Finally, we apply our new inference

methods to an empirical application where we nowcast quarterly U.S. real GDP growth rate using

monthly macroeconomic factors. The results show that there is a significant bias, thereby indicating

the importance of correcting it.

The rest of this paper is organized as follows. In Section 2, we derive the asymptotic distri-

bution of the factor-augmented MIDAS regression model and propose a plug-in bias estimator. In

Section 3, we propose and theoretically justify the bootstrap. The simulation results are shown

in Section 4, and the empirical application is discussed in Section 5. Section 6 concludes the pa-

per. Additionally, we include three mathematical appendices: Appendix A delivers the primitive

assumptions necessary for proving the results in the paper and Appendices B - C shows the proof

of the results in Sections 2 -3, respectively.

For any matrix A, ∥A∥ denotes its Frobenius norm defined as ∥A∥ = (trace(A′A))1/2. ρ(A)

denotes the Euclidean vector norm of the vector Ax: ρ(A) = max∥x∥=1 ∥Ax∥, where ∥Ax∥ =

(x′A′Ax)1/2.

2 Asymptotic Theory

2.1 Factor-augmented MIDAS regression models

The MIDAS regression model projects high-frequency variables onto a target variable, which is

denoted as yt. The regressors are observed at most m times between t and t − 1. To handle

variables sampled at mixed frequency, a MIDAS regression aggregates the high-frequency variables
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with a lag polynomial function. The basic MIDAS regression model with a single observed regressor

xt can be written as follows:

yt = β0 + β1W (L1/m; θ)xt + εt, t = 1, . . . , T, (1)

where W (L1/m; θ) =
∑K

k=1wk(θ)L
k/m and Lk/mxt = xt−k/m. Here, wk(θ) is a weighting function

that temporally aggregates the regressor and its lags, and θ is a p×1 vector of weighting parameters.

To identify β1, we assume that wk(θ) ∈ (0, 1) and
∑K

k=1wk(θ) = 1. A common weighting scheme

in the MIDAS regression model is the exponential Almon lag with two parameters such that

wk(θ) =
exp(θ1k + θ2k

2)∑K
k=1 exp(θ1k + θ2k2)

. (2)

Other weighting schemes include the beta function and the linear function. Details can be found in

Ghysels, Valkanov, and Serrano (2009). Although the high-frequency variable is used in the regres-

sion in a linear manner, the estimation of the parameters is done through a nonlinear estimation

method as the MIDAS regression itself is a nonlinear function of the parameters.

In this paper, we consider the factor-MIDAS regression model, which employs unobserved high-

frequency factors as regressors. In particular, letting the regressor xt in (1) be replaced by a latent

factor, we write the model as follows.

yt = β0 + β1W (L1/m; θ)ft + εt = β0 + β1

K∑
k=1

wk(θ)ft−k/m + εt, t = 1, . . . , T,

where ft−k/m is a (single) factor in the following panel factor model,

Xt−k/m = Λft−k/m + et−k/m, k = m− 1, . . . , 0, and t = 1, . . . , T. (3)

The factor model includes factor loadings denoted by Λ and an idiosyncratic error term, et−k/m. If

there are r unobserved factors, represented by a r× 1 vector of common factors denoted by ft−k/m

in the factor model (3), then the model can be generalized as follows.

yt = β0 + β′1W (L1/m; θ)ft + εt = β0 + β′1Ft(θ) + εt, t = 1, . . . , T, (4)

where β1 = (β1,1, . . . , β1,r)
′, and θ = (θ′1, . . . , θ

′
r)

′ with θj = (θj,1, . . . , θj,p)
′, a p × 1 weighting

parameter for j-th factor, for j = 1, . . . , r. We define Ft(θ) ≡W (L1/m; θ)ft in the second equality.
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In fact, the temporal aggregation in this generalized model applies on a vector as

Ft(θ) =

K∑
k=1

wk(θ)L
k/mft =

K∑
k=1

wk(θ)ft−k/m,

where wk(θ) is a r×r diagonal matrix such that wk(θ) ≡ diag(wk,1(θ1), . . . , wk,r(θr)), where wk,j(θj)

is the weight for the k-th lag of the j-th factor.1 To derive the distribution in the next section, we

further simplify the general factor-MIDAS regression model (4) to

yt = g(Ft, α) + εt, t = 1, . . . , T, (5)

where g(Ft, α) = β0+β
′
1Ft(θ), α = (β′, θ′)′ with β = (β0, β

′
1)

′, and Ft = (1, f ′t , f
′
t−1/m, . . . , f

′
t−K/m)′.

For convenience, we use the high frequency time index denoted by th = 1, . . . , TH , where TH = mT .

We derive this by noting that th = m((t− 1)+ i/m) for i = 1, . . . ,m, and t = 1, . . . , T .2 Using this

notation, we can write the factor model as Xth = Λfth + eth , for th = 1, . . . , TH . Using the matrix

notation, we write the factor model as X = fΛ′+ e, where X is a TH ×N matrix of high-frequency

time series, f = (f1, . . . , fTH
)′ is a TH × r matrix of common factors, and e is a TH ×N matrix of

idiosyncratic errors.

2.2 Asymptotic Theory

We denote NLS estimators by α̂ when the factors are observed. Then, Andreou, Ghysels, and

Kourtellos (2010) show that the limiting distribution of α̂ is as following:

√
T (α̂− α0)

d−→ N(0,Σ−1ΩΣ−1), (6)

where α0 = (β′, θ′)′, Σ = E[gα,tg
′
α,t], and Ω = E[ε2t gα,tg

′
α,t] with gα,t = ∂g(Ft, α)/∂α. When the

true factors are observed, the estimators are normally distributed with mean zero and a sandwich

variance.

In factor-MIDAS models, however, the factors are latent, and we have to estimate them. Ac-

cordingly, the estimation in the factor-MIDAS regression model proceeds in two steps. First, we

estimate the common factors from a panel dataset of high-frequency indicators by principal com-

1Note that when m = 1 and K = 0, the factor-MIDAS regression model is equivalent to the standard factor-
augmented regression model in GP (2014).

2With this notation, a high-frequency observation at th is equivalent to observing it at the i-th intra-period
between t− 1 and t. Note that the time notation in the factor model (3) can be written as (t− 1) + (m− k)/m.
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ponent analysis (PCA). The estimated factors, f̃ , are equivalent to
√
TH times the eigenvectors of

XX ′/THN corresponding to the r largest eigenvalues (in decreasing order). The estimated factor

loadings are Λ̃ = X ′f̃/TH .3 Second, we estimate the parameters β and θ using nonlinear least

squares (NLS) by regressing the low frequency variable on the temporally aggregated estimated

factors at high-frequency. In the factor model, the estimated factors f̃t are only consistent for Hft,

where the rotation matrix H is defined as H = Ṽ −1 f̃ ′f
TH

Λ′Λ
N , and Ṽ is a r × r diagonal matrix of

eigenvalues of XX ′/THN in a descending order (for more details, see Bai (2003)). By incorporating

the estimated factors in the regression and noting the rotation of the factors, we can rewrite (4) as

follows.

yt = β0 + β′1H
−1F̃t(θ) + β′1H

−1(HFt(θ)− F̃t(θ)) + εt = g(F̃t, α) + ξt, (7)

where g(F̃t, α) = β0 + β′1H
−1F̃t(θ), α = (β0, β

′
1H

−1, θ′)′, and F̃t(θ) =
∑K

k=1wk(θ)f̃t−k/m. The

coefficient on the aggregated factors estimates β′1H
−1. Moreover, the estimation error of the factors

implies that the regression error term is ξt = β′1H
−1(HFt(θ) − F̃t(θ)) + εt. We denote the NLS

estimators of α in (7) by α̃ = (β̃′, θ̃′)′ to distinguish from α̂ = (β̂′, θ̂′)′, which are the estimators from

the regression of yt on the true factors ft. Next, we derive the limiting distribution of
√
T (α̃− α)

under the assumption that
√
T/N → c, where 0 ≤ c <∞.

The asymptotic distribution of the estimators is derived under Assumptions A.1 - A.6 in Ap-

pendix A. We also introduce the following notations: V ≡ plim Ṽ , Q ≡ plim
(
f̃ ′f
TH

)
, Qk ≡

plim
∑TH

th=k+1 f̃
′
th
fth−k, and Σf̃ ≡ V −1QΓQ′V −1, which is the asymptotic variance of

√
N(f̃th −

Hfth).
4 The asymptotic variance of the factor estimation error is a function of Γ, which is defined

by Γ ≡ limN→∞ V ar
(
Λ′eth√

N

)
. We assume that the idiosyncratic errors in the factor model, eth is

stationary in Assumption A.2-(d). Under the stationarity of the idiosyncratic errors, we also denote

Γk ≡ limN→∞Cov
(
Λ′eth−k√

N
,
Λ′eth√

N

)
. Note that by the identification assumption, Assumption A.1-

(d) in Appendix A, we have Q = H0, where H0 = plimH, and H0 is a diagonal matrix of ±1, where

the sign is determined by the sign of f̃ ′f/TH (for the detail of the proof, see the proof of (2) in Bai

and Ng (2013)). Therefore, the asymptotic variance can be also written as Σf̃ = V −1H0ΓH
′
0V

−1.

3When TH > N , we use normalization such that Λ′Λ/N = Ir and f ′f is a diagonal matrix, which is computationally
easier. In this case, Λ̃ is the matrix of

√
N times the eigenvectors of X ′X/THN corresponding to the r largest

eigenvalues and the estimated factors are f̃ = XΛ̃/N .
4For the details, see Bai (2003).
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Theorem 2.1 (Asymptotic distribution of the estimators in the factor-MIDAS models)

If
√
T/N → c, where 0 ≤ c <∞, and Assumptions A.1 - A.6 in Appendix A hold,

√
T (α̃− α)

d−→ N(−c∆α,Σα), (8)

where Σα ≡ Φ
′−1
0 Σ−1ΩΣ−1Φ−1

0 with Φ0 = diag(1, H0, Ip), and

∆α =

∆β

∆θ

 = (Φ0ΣΦ
′
0)

−1

Bβ

Bθ

 . (9)

Bβ = (Bβ0 , B
′
β1
)′ and Bθ are such that Bβ0 = 0,

Bβ1 =
[ K∑
k=1

wk(θ)
{
Σf̃ + V Σf̃V

−1
}
wk(θ)

+
K∑
k=1

K∑
l ̸=k

wk(θ)
{
V −1H0Γk−lH

′
0V

−1 +Qk−lΓH
′
0V

−2
}
wl(θ)

]
plim(β̃1), (10)

and

Bθ = plim(β̃1) ◦
[ K∑
k=1

∂wk(θ)

∂θ

{
Σf̃ + V Σf̃V

−1
}
wk(θ)

+
K∑
k=1

K∑
l ̸=k

∂wk(θ)

∂θ

{
V −1H0Γk−lH

′
0V

−1 +Qk−lΓH
′
0V

−2
}
wl(θ)

]
plim(β̃1), (11)

where ∂wk(θ)
∂θ ≡ diag

(
∂wk,1(θ1)

∂θ1
, . . . ,

∂wk,r(θr)
∂θr

)
is a block diagonal matrix and the j-th diagonal block

is a p× 1 vector given by
∂wk,j(θj)

∂θj
for j = 1, . . . , r.

In (11) in Theorem 2.1, we use the Hadamard product which is equivalent to (A◦B)ij = AijBij .

More specifically, β ◦ ∂wk(θ)
∂θ is a block diagonal matrix where the j-th diagonal block contains

βj
∂wj,k(θj)

∂θj
for j = 1, . . . , r. Based on Theorem 2.1, the bias of the estimators is proportional to c,

the limiting value of
√
T/N , and also to plim(β̃1) = (H−1)′β1. This implies that the estimates are

biased unless β1 = 0 or c = 0. Additionally, the asymptotic variance of the estimated factors, Σf̃ ,

affects the bias. Since the variance of the factor estimation error depends on Γ, which is a variance

of the scaled average of the factor loadings and the idiosyncratic errors in the factor model, the

cross-sectional dependence of factor errors matters. These findings are similar to the bias in the

context of GP (2014).
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It is important to highlight some differences between our results and GP (2014). Firstly, the

bias in the MIDAS regression model depends on the weighting scheme, wk(θ), due to a temporal

aggregation. Secondly, there exists a bias in the weighting parameters, θ. The bias in θ is similar to

the bias in the slope coefficient, β1. However, it differs in that the bias in the weighting parameters

depends on the derivative of the weighting scheme and quadratic form of the slope coefficient. This

occurs because MIDAS regressions are a nonlinear function of the weighting parameters.

Finally, in (10) and (11), both biases depend on the covariance of the cross-sectional av-

erage of factor loadings and the idiosyncratic error terms between two distinct periods, repre-

sented as Γk−l. This term arises due to the presence of the lags of the estimated factors. More

specifically, as we include the lags of the estimated factors, we have an extra term such that

1
TH−k

∑TH
th=k+1Cov(

√
N(f̃th − Hf̃th),

√
N(f̃th−k − Hf̃th−k)) for k ̸= 0. Since this is a function of

Γk, the bias in our context relies on the serial dependence as well as cross-sectional dependence

of the idiosyncratic error term in the factor model. This implies that the bias will depend on se-

rial and cross-sectional dependence in the factor-MIDAS regression models even without temporal

aggregation.5

2.3 Plug-in Bias

In this section, we propose an analytical estimator to account for the bias identified in Theorem 2.1.

In the context of the factor-augmented regression model, Ludvigson and Ng (2009) proposed a

plug-in bias estimator by replacing the unknown quantities with their consistent estimators and

correcting the bias. Similarly, we propose a bias-corrected estimator for factor-augmented MIDAS

regression models.

In order to do that, we need a consistent estimator for the term Γk. This term has not been

explored in previous literature and it depends on the cross-sectional and the serial dependence of

the idiosyncratic error term. When the idiosyncratic error term is serially but not cross-sectionally

correlated, we can estimate this term as Γ̂k = 1
N(TH−k)

∑TH
th=k+1

∑N
i=1 λ̃iλ̃

′
iẽi,th ẽi,th−k, where Γ̂k

denotes the estimator of Γk. However, when the idiosyncratic error term is cross-sectionally and

serially dependent, estimating this term is no longer straightforward, as discussed in Bai and Ng

5When there is no temporal aggregation, the MIDAS regression becomes unrestricted MIDAS (U-MIDAS) pro-
posed by Foroni, Marcellino, and Schumacher (2015). If the estimated factors are used as predictors in U-MIDAS,
there will be bias that also depends on cross-sectional and serial dependence.

9



(2006). To address this issue, Bai and Ng (2006) propose an estimator for the variance-covariance

matrix of the cross-sectional average of factor loadings and the idiosyncratic error term, denoted

by Γ. They use the time series observations and truncation with n < N under the covariance

stationarity such that Γ̂CS-HAC = 1
n

∑n
i=1

∑n
j=1 λ̃iλ̃j

1
TH

∑TH
th=1 ẽi,th ẽj,th .

To propose a method to estimate Γk that takes into account cross-sectional and serial depen-

dence, we take an approach, similar to the one used in Bai and Ng (2006). We use the time series

observations and a truncation method, that limits n < N observations. We denote the estimator

for Γk by Γ̂k, which is defined as follows.

Γ̂k,CS-HAC =
1

TH − k

TH∑
th=k+1

1

n

n∑
i=1

n∑
j=1

λ̃iλ̃
′
j ẽi,th ẽj,th−k, (12)

where n = min(
√
N,

√
TH). Note that by Assumption A.2-(d), Γk does not depend on time.

Theorem 2.2 Suppose the Assumptions A.1-A.4 in Appendix A hold. Then, for any fixed k =

0, 1, 2, . . . ,

∥Γ̂k −H−1′

0 ΓkH
−1
0 ∥ p−→ 0 if

n

min(N,TH)
→ 0,

Here, in Theorem 2.2, Γ̂k depends on the assumption on the serial and cross-sectional de-

pendence in the idiosyncratic errors of the factor model. If there is only serial dependence,

Γ̂k = 1
N

∑N
i=1 λ̃iλ̃

′
i

1
TH−k

∑TH
th=k+1 ẽi,th ẽi,th−k. If we allow for cross-sectionally dependence addi-

tionally, Γ̂k = Γ̃k,CS-HAC defined in (12). Note that if k = 0, our estimators are equivalent to

the estimators proposed in Bai and Ng (2006). Theorem 2.2 enables us to construct consistent

estimators for (10) and (11) as follows.

B̂β1 =

2 K∑
k=1

wk(θ̃)Σ̃f̃wk(θ̃) +

K∑
k=1

K∑
l ̸=k

wk(θ̃)
{
Ṽ −1Γ̂k−l,CS-HACṼ

′−1 + Q̃k−lΓ̂CS-HACṼ
−2
}
wl(θ̃)

 β̃1, and
B̂θ = β̃1 ◦

2 K∑
k=1

∂wk(θ̃)

∂θ
Σ̃f̃wk(θ̃) +

K∑
k=1

K∑
l ̸=k

∂wk(θ̃)

∂θ

{
Ṽ −1Γ̂k−l,CS-HACṼ

−1 + Q̃k−lΓ̂CS-HACṼ
−2
}
wl(θ̃)

 β̃1,
where Σ̃f̃ = Ṽ −1Q̃Γ̂CS-HACQ̃Ṽ

−1 with Q̃ = f̃ ′f̃/TH , and Q̃k−l =
∑TH

th=k+1 f̃
′
th
f̃th−k. Note that the

bias estimates can be simpler under the restriction on either cross-sectional or serial dependence,

or both. We denote the bias-corrected estimator by α̂BC such that α̂BC ≡ α̃ − (− 1
N ∆̂α). Here,

−∆̂α is the estimate of the bias in α̃, where ∆̂α = Σ̂−1(B̂′
β, B̂

′
θ)

′ with Σ̂ a consistent estimator of
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Σ, B̂β = (B̂β0 , B̂
′
β1
)′, and B̂β0 = 0.

Proposition 2.1 Suppose the Assumptions A.1 - A.6 in Appendix A hold and
√
T/N → c, where

0 ≤ c <∞, then

√
T (α̃BC − α)

d−→ N(0,Σα). (13)

Based on Proposition 2.1, the bias corrected estimator no longer contains an asymptotic bias.

However, it is well known that an approach based on asymptotic theory does not perform well in

finite samples. Additionally, the bias takes a very complicated form in our context, which makes it

difficult to implement. Therefore, we discuss an alternative approach, a bootstrap method in the

next section.

3 Bootstrap method: Autoregressive-sieve + CSD bootstrap

In this section, we propose a bootstrap method and show its validity by proving that our method

satisfies bootstrap high level conditions under which any general residual-based bootstrap is satis-

fied. The bootstrap high level conditions are similar to those of GP (2014), hence we leave them

in the appendix (see Appendix C).

In particular, we propose a bootstrap procedure, where we resample the factor model and the

MIDAS regression model, and then obtain the bootstrap estimates. For resampling the idiosyncratic

errors in the factor model, GP (2014) proposed a wild bootstrap and proved its validity in the

context of the factor-augmented regression models under no cross-sectional dependence. To allow

for cross-sectional dependence, Gonçalves and Perron (2020) proposed a bootstrap method that

utilizes a thresholding technique to allow for the cross-sectional dependence, so-called CSD (cross-

sectional dependent) bootstrap. However, these methods cannot be used in our context as it

destroys the serial dependence in the idiosyncratic error terms.

Therefore, we propose a new method that combines autoregressive sieve bootstrap and the CSD

bootstrap. The autoregressive sieve bootstrap was originally proposed in Bühlmann (1997) and has

been further discussed in Kreiss, Paparoditis, and Politis (2011) and Meyer and Kreiss (2015). Bi,

Shang, Yang, and Zhu (2021) apply this bootstrap method to the estimated factors. In our paper, we

combine this method with CSD bootstrap method and apply it to the residuals in the factor model.

We refer our bootstrap method to AR-sieve + CSD bootstrap. Our bootstrap method is recently
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considered by Gonçalves et al. (2024), where they replace the autoregressive sieve bootstrap with

an autoregressive parametric bootstrap. The AR-sieve + CSD bootstrap method resamples each

time series residual in the factor model with an autoregressive sieve process and the corresponding

innovations by the CSD bootstrap method. Therefore, the cross-sectional dependence is captured in

the innovation terms and the serial dependence is captured by an autoregressive process. In order to

prove our bootstrap method is valid, we assume that {ei,th}
TH
th=1 is an infinite order moving average

process that can be represented as an AR(∞) process such that ei,th =
∑∞

j=1 ϕi,jei,th−j + ui,th , for

th = 1, . . . , TH and i = 1, . . . , N . The innovation terms in AR(∞) process, uth = (u1,th , . . . , uN,th)
′,

are identically and independently distributed from a distribution with mean zero and finite variance,

Σu. Here, Σu is assumed to be non-diagonal to account for cross-sectional dependence in the

idiosyncratic error term. More formal representation of the assumptions on our bootstrap method

are following the bootstrap algorithm below.

Bootstrap Algorithm

1. For each i = 1, . . . , N , select an order pi = pi(TH), pi << TH , and fit a pi-th order autore-

gressive model to ẽi,1, . . . , ẽi,TH
, where ẽi,th = Xi,th − λ̃if̃th . We denote ϕ̃i(pi) = (ϕ̃i,j(pi), j =

1, . . . , pi), the Yule-Walker autoregressive parameter estimators, such that ϕ̃i(pi) = Γ̃(pi)
−1γ̃pi ,

with γ̃pi = (γ̃e(1), γ̃e(2), . . . , γ̃e(pi))
′ and Γ̃(pi) = (γ̃e(r − s))r,s=1,2,...,pi such that

γ̃e(τ) =
1

TH

TH−|τ |∑
th=1

(ẽi,th − ēi)(ẽi,th+|τ | − ēi), (14)

for τ = 0, . . . , pi and ēi = T−1
H

∑TH
th=1 ẽi,th .

With chosen lag length pi = pi(TH),

e∗i,th =

pi∑
j=1

ϕ̃i,j(pi)e
∗
i,th−j + u∗i,th , for th = 1, . . . , TH , (15)

where u∗th = (u∗1,th , . . . , u
∗
N,th

) = Σ̃
1/2
u ηth with ηth ∼ i.i.d (0, IN ). The initial conditions are

e∗i,0, . . . , e
∗
i,1−pi

= 0, for i = 1, . . . , N , which is equivalent to the stationary mean of e∗i,th in the

bootstrap world. Following Gonçalves and Perron (2020), we choose Σ̃u by a thresholding
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technique such that

Σ̃u = (σ̂u,ij)i,j=1,...,N ,

with

σ̂u,ij =

 σ̃u,ij i = j

σ̃u,ij1 (|σ̃u,ij | > ω) i ̸= j,
with σ̃u,ij =

1

TH

TH∑
th=1

ũi,th ũj,th ,

where ω is a threshold and ũi,th = ẽi,th −
∑pi

j=1 ϕ̃i,j(pi)ẽi,th−j for i = 1, . . . , N and th =

1 + pi, . . . , TH .

2. For t = 1, . . . , T ,

y∗t = β̃0 + β̃′1F̃t(θ̃) + ε∗t ,

where ε∗t = νtε̂t, ε̂t = yt − β̃0 − β̃′1F̃t(θ̃) and νt is i.i.d. (0,1) across t and independent with

ηth .

3. We obtain the estimated factors, f̃∗ and factor loadings, Λ̃∗ by principal component analysis

on bootstrap panel, X∗
t .

4. By regressing y∗t on 1 and temporally aggregated (f∗
′

t−1/m, . . . , f
∗′
t−K/m)′, we obtain the esti-

mates in the bootstrap world, β̃∗ and θ̃∗.

In step 1, we resample the residuals of the factor model by AR sieve + CSD bootstrap. The

way we resample the residuals in the factor model is similar to the bootstrap procedure in Kreiss

et al. (2011) and Bühlmann (1997). The difference is that we resample the innovation terms in

the autoregressive process for each series using CSD bootstrap proposed by Gonçalves and Perron

(2020). In the second step, we resample the regression errors by a simple wild bootstrap, which is

the same bootstrap method used in GP (2014) and in Gonçalves and Perron (2020) in their second

step. Finally, we estimate the factors and factor loadings from a bootstrap panel dataset, X∗
th
,

for th = 1, . . . , TH , and estimate the parameters by regressing the bootstrap samples, y∗t on 1 and

F ∗
t (θ̃). To prove the validity of AR sieve + CSD bootstrap, we introduce the following additional

assumptions.

Assumption 1 λi are either deterministic such that ∥λi∥ ≤ M ≤ ∞, or stochastic such that
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E∥λi∥24 ≤M <∞ for all i: E∥fth∥24 ≤M <∞; E|ei,th |24 ≤M <∞, for all (i, th); and for some

q > 1, E|εt|4q ≤M <∞, for all t.

Assumption 2 E(εt|yt, Ft, yt−1, Ft−1, . . .) = 0, and Ft = (ft, . . . , ft−k/m)′ and εt are independent

of the idiosyncratic errors ei,sh for all (i, sh, t).

Assumption 3 ei,th =
∑∞

j=1 ϕi,jei,th−j + ui,th, with
∑∞

j=1(1 + |j|)r|ϕi,j |8 <∞ for some r ≥ 0, for

i = 1, . . . , N .

Assumption 4 Σu ≡ E(uthu
′
th
) = (σu,ij)i,j=1,...,N , with uth = (u1,th , . . . , uN,th)

′, for all th, i, j

and is such that λmin(Σu) > c1 and λmax(Σu) < c2 for some positive constants c1 and c2.

Assumption 5 As N,TH → ∞ such that logN/TH → 0,

(a) maxi,j≤N

∣∣∣ 1
TH

∑TH
th=1 ui,thuj,th − σu,ij

∣∣∣ = Op

(√
logN
TH

)
.

(b) maxi≤N

∥∥∥ 1
TH

∑TH
th=1 fthui,th

∥∥∥ = Op

(√
logN
TH

)
.

Assumptions 1 and 2 are similar to the Assumptions 6 and 7 in GP (2014), except that we need

higher moments in Assumption 1. The higher moments are needed since our idiosyncratic terms

are and serially dependent and we need to apply Cauchy-Schwarz inequality once more than in GP

(2014) and GP (2020). Assumption 2 justifies that we use wild bootstrap in the second step as

the regression error term is a martingale difference sequence. Furthermore, in Assumption 3, we

assume that idiosyncratic error term is a stationary autoregressive (AR) process of infinite order

with polynomial decaying coefficients.6 In the proof of Section 3 (see Appendix C), we show that

r = 4 is sufficient. Finally, Assumption 4 and Assumption 5 is similar to the CS and TS assumptions

in Gonçalves and Perron (2020) (on the idiosyncratic error terms) and Gonçalves et al. (2024) (on

the innovations of the idiosyncratic error terms). We assume that the variance-covariance matrix

of the innovation terms is time-invariant and the innovation terms are weakly dependent in cross-

sectional dimension. Under these additional assumptions, we show the validity of the AR-sieve

+CSD bootstrap method in the following theorem.

6In Assumption 3, by stacking the idiosyncratic error term over i, we can write the model as a vector autoregressive
(VAR) process with diagonal coefficient matrix. One can use a non-diagonal coefficient matrix, however, this will
need a high-dimensional VAR estimation method. In our paper, we focus on a diagonal coefficient matrix.

14



Theorem 3.1 Suppose that autoregressive sieve with CSD (AR-sieve + CSD) bootstrap and wild

bootstrap are used to generate {e∗i,th} and {ε∗t }, respectively with E∗|ηi,th |4 < C for all (i, th) and

E∗|νt|4q < C for all t, for some q > 1. If Assumptions A.1 - A.6 in Appendix A and Assumptions 1

- 5 hold,

sup
x∈Rr+p

|P ∗(
√
T (Φ∗

0α̃
∗ − α̃) ≤ x)− P (

√
T (α̃− α) ≤ x)| p−→ 0.

4 Monte Carlo Simulation

In this section, we confirm the presence of bias in the factor-MIDAS regression models, and show

the finite sample performance of both inference methods we propose. The data generating process

(DGP) is similar to GP (2014) and Aastveit, Foroni, and Ravazzolo (2017). We consider the

factor-MIDAS regression model with a single factor model as follows.

yt = β0 + β1

K∑
k=1

wk(θ)ft−k/m + εt, (16)

Xi,t−k/m = λift−k/m + ei,t−k/m, k = m− 1, . . . , 0. (17)

For a weighting function, wk(θ), for k = 1, . . . ,K, we use the exponential Almon lag with two

parameters, (2).

The factors and factor loadings are generated similarly to GP (2014). The single factor ft

is randomly drawn from a standard normal distribution independently over time. The factor

loading, λi is randomly drawn from a uniform distribution of the interval [0, 1] independently

across indicators, i. We consider that the high-frequency variable is observed at most 3 times

between t − 1 and t (equivalent to low-frequency data being quarterly and high-frequency data

being monthly). The parameters are β0 = 0, β1 = 2.5, θ1 = 0.007, and θ2 = −0.01. We choose the

weighting parameters similar to Aastveit et al. (2017) to induce fast-decaying weights.

Table 1 shows six different scenarios to generate the idiosyncratic error terms and MIDAS regres-

sion error terms. We consider the error term in the regression model to be either homoskedastic or

heteroskedastic. In DGP 1, we consider homoskedastic error term and in the rest of the DGPs, the

error terms are conditionally heteroskedastic. When they are homoskedastic, the errors are drawn

independently and identically from a standard normal distribution. To allow for heteroskedasticity,
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Table 1: Data generating process

DGP εt ei,th

1 N(0, 1) N(0, 1)

2 εt =
√
htvt N(0, 1)

3 εt =
√
htvt N(0, σ2i )

4 εt =
√
htvt AR + N(0, σ2i )

5 εt =
√
htvt CS + N(0, 1)

6 εt =
√
htvt CS + AR

where ht = 0.1 + 0.3ε2t−1 + 0.6ht−1 and
νt ∼ i.i.d.N(0, 1) for t = 1, . . . , T and th =
1, . . . , TH .

we assume that the error terms follow a GARCH model, which implies that they are conditionally

heteroskedastic but unconditionally homoskedastic. Particularly, we use the same process as in

Aastveit et al. (2017): εt =
√
htvt where ht = 0.1 + 0.3ε2t−1 + 0.6ht−1 and vt ∼ i.i.d.N(0, 1).

For the idiosyncratic term in the factor model, we use the same data-generating process in

GP (2014). In DGP 1 and DGP 2, the idiosyncratic error terms are homoskedastic by randomly

generating them from a standard normal distribution. DGP 3 induces heteroskedasticity in the

idiosyncratic term, where the variance for each indicator is drawn from U [0.5, 1.5]. DGP 4 intro-

duces the serial correlation by generating the idiosyncratic term from an autoregressive model of

order one such that ei,th = ρiei,th−1 + ui,th , where ui,th ∼ i.i.d.N(0, 1). For simplicity, we let ρi = ρ

for all i = 1, . . . , N , and ρ = 0.5. The idiosyncratic terms are re-scaled by (1 − ρ2)1/2 so that the

variance of the idiosyncratic error terms is 1. DGP 5 allows for cross-sectional dependence in the

homoskedastic idiosyncratic terms as in GP (2014) and Bai and Ng (2006). Precisely, we let the

correlation between ei,th and ej,th be 0.5|i−j| for |i − j| ≤ 5 and 0 for otherwise. In DGP 6, the

idiosyncratic error terms have both serial and cross-sectional dependence. The idiosyncratic error

terms follow the autoregressive process of order 1 with the innovation term being cross-sectionally

correlated. The idiosyncratic terms in DGP 5 and 6 are also re-scaled to have the variance 1, the

same as in other designs.

We report the size of the bias in a slope coefficient for the single factor, β1. Mainly, we report

two sets of results: based on asymptotic theory and based on the bootstrap method. The bias

based on asymptotic theory is reported when we use the true factor, the estimated factor, and
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the plug-in bias estimator. We also impose that we know Cov(ei,th , ei,th−k) = 0 for k > 1, and

therefore we only compute the bias term up to the first degree covariance term. The other set of

results includes the bias based on two different bootstrap methods: wild bootstrap and AR sieve

+ CSD bootstrap. The wild bootstrap is only valid when the idiosyncratic error terms do not

have the serial and cross-sectional dependence, DGP 1 - 3. For the rest of the designs, the wild

bootstrap is not valid. Therefore, under the general settings (DGP 4 - 6), we can quantify the cost

of not accounting for either time series or cross-sectional dependence or both in the idiosyncratic

error term by comparing two bootstrap methods.

To compute the size of bias, we use the approach described in GP (2014). The bias in the

original sample is calculated as the average of Hβ̃1 − β1. This guarantees each estimator in the

replication to be consistent for β1. In the bootstrap world, similarly, we compute the bias of

the bootstrap estimator as the average of HH∗β̃∗1 − Hβ̃1. We also report the 95% coverage rate

for the associated estimators: estimated factors, plug-in bias and two bootstrap methods. The

coverage rates associated with the bootstrap methods are reported by using the bootstrap equal-

tailed percentile-t method.

All our simulation results are based on 5000 replications and 399 bootstraps. We consider

T = 50, 100, 200 and N = 50, 100, 200. Since the high frequency is observed m = 3 times more, the

time series dimensions in the factor model as 150, 300, and 600, respectively. We choose K = 11,

which implies that a low-frequency variable can be explained by 11 lagged monthly factors.

Table 2 shows the results of DGP 1 and 2 in each panel. The first panel shows the results of

DGP 1, where both error terms are randomly generated from an i.i.d. standard normal distribution.

Below the row “bias”, we have a size of bias for each case: true factor, estimated factor, plug-in bias

and two bootstrap methods. The fourth and fifth rows contain the bias when we use the bootstrap

methods, wild bootstrap, and autoregressive sieve with CSD bootstrap, respectively. The results

indicate that there is no bias when using the true factor, however, a bias does exist when using the

estimated factor as a regressor. Increasing the sample size in both cross-sectional and time series

dimensions results in a decrease in bias. If the cross-sectional dimension is small (50 and 100), the

plug-in bias tends to overestimate the bias size. Both bootstrap methods perform similarly and

replicate bias size well. When no method is used to correct the bias, size distortion occurs in terms

of coverage rates. The plug-in bias somewhat recovers the size distortion, but bootstrap methods
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Table 2: DGP 1 & DGP 2 - Bias and coverage rate of 95% CIs for β

N = 50 N = 100 N = 200

T = 50 100 200 50 100 200 50 100 200

TH = 150 300 600 150 300 600 150 300 600

DGP 1:
homo &
homo

bias

True Factor -0.01 -0.01 0.00 -0.02 -0.01 0.00 0.00 0.00 0.00

Estimated Factor -0.32 -0.31 -0.29 -0.20 -0.17 -0.16 -0.12 -0.10 -0.08

Plug-in -0.38 -0.34 -0.32 -0.21 -0.19 -0.18 -0.10 -0.10 -0.09

WB -0.25 -0.24 -0.23 -0.16 -0.15 -0.14 -0.11 -0.09 -0.08

AR-sieve+CSD -0.24 -0.24 -0.23 -0.16 -0.15 -0.14 -0.10 -0.09 -0.08

95% coverage rate

Estimated Factor 84.8 82.0 73.9 89.6 90.5 88.3 91.7 92.7 93.4

Plug-in 87.6 89.1 89.3 90.4 92.1 92.4 91.2 92.7 93.6

WB 94.1 94.7 93.3 95.0 95.6 94.5 92.7 95.4 94.9

AR-sieve+CSD 95.8 94.9 92.4 95.8 96.1 95.0 96.0 96.3 95.3

DGP 2:
hetero &
homo

bias

True Factor -0.01 0.00 0.00 0.00 0.01 -0.01 0.01 -0.01 0.00

Estimated Factor -0.34 -0.30 -0.29 -0.19 -0.16 -0.16 -0.10 -0.10 -0.09

Plug-in -0.37 -0.34 -0.32 -0.20 -0.19 -0.18 -0.10 -0.10 -0.09

WB -0.24 -0.24 -0.23 -0.16 -0.15 -0.14 -0.10 -0.09 -0.08

AR-sieve+CSD -0.24 -0.24 -0.23 -0.16 -0.15 -0.14 -0.10 -0.09 -0.08

95% coverage rate

Estimated Factor 78.1 76.2 68.4 85.9 88.1 86.2 88.7 91.5 91.6

Plug-in 82.7 86.8 88.3 86.6 89.8 92.5 88.9 92.3 92.5

WB 91.7 93.0 93.1 92.6 93.3 94.2 91.0 94.4 94.0

AR-sieve+CSD 92.5 92.9 92.2 94.0 95.2 93.8 93.5 94.8 94.8

In DGP 1, both error terms are homoskedastic. In DGP 2, MIDAS regression error terms are heteroskedastic and idiosyncratic
error terms are homoskedastic. The results of coverage rates, when we use the estimated factors and plug-in bias, are based
on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile t method.

outperform the plug-in bias method. The results of DGP 1 and DGP 2 are similar, and both

bootstrap methods are valid for these scenarios since the idiosyncratic error terms are randomly

selected from a standard normal distribution.

The results of DGP 3 and 4 are presented in Table 3. In both scenarios, the MIDAS regression

error terms are now heteroskedastic for both DGPs. The idiosyncratic error terms are heteroskedas-

tic. The results of DGP 3 are similar to those of DGP 1 and 2. We have a bias when we use the
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Table 3: DGP 3 & DGP 4 - Bias and coverage rate of 95% CIs for β

N = 50 N = 100 N = 200

T = 50 100 200 50 100 200 50 100 200

TH = 150 300 600 150 300 600 150 300 600

DGP 3:
hetero &
hetero

bias

True Factor 0.00 -0.01 0.00 -0.01 0.00 0.00 0.01 0.00 0.00

Estimated Factor -0.37 -0.34 -0.32 -0.22 -0.19 -0.17 -0.12 -0.11 -0.10

Plug-in -0.41 -0.36 -0.35 -0.22 -0.20 -0.19 -0.11 -0.11 -0.10

WB -0.27 -0.26 -0.26 -0.17 -0.16 -0.15 -0.11 -0.10 -0.09

AR-sieve+CSD -0.26 -0.26 -0.25 -0.17 -0.16 -0.15 -0.11 -0.10 -0.09

95% coverage rate

Estimated Factor 75.0 72.6 63.9 85.0 85.5 84.4 88.5 90.3 91.0

Plug-in 80.9 87.9 88.9 86.8 89.3 92.1 88.9 91.1 92.5

WB 91.7 94.2 92.7 92.6 93.5 94.1 91.3 93.9 93.8

AR-sieve+CSD 93.7 92.1 90.4 93.6 94.3 94.1 94.1 95.1 93.6

DGP 4:
hetero &

AR

bias

True Factor 0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00

Estimated Factor -0.64 -0.57 -0.54 -0.41 -0.35 -0.31 -0.28 -0.21 -0.18

Plug-in -0.45 -0.42 -0.41 -0.26 -0.26 -0.25 -0.14 -0.14 -0.14

WB -0.22 -0.22 -0.22 -0.15 -0.14 -0.14 -0.10 -0.09 -0.08

AR-sieve+CSD -0.38 -0.37 -0.36 -0.29 -0.26 -0.25 -0.22 -0.18 -0.16

95% coverage rate

Estimated Factor 52.2 44.5 29.2 72.3 71.8 67.3 81.5 85.0 84.1

Plug-in 72.0 77.1 77.1 81.1 86.0 87.9 85.0 90.1 91.3

WB 82.8 79.4 68.7 89.0 88.8 86.1 89.6 92.4 91.3

AR-sieve+CSD 88.7 87.4 81.4 91.9 91.9 91.3 93.6 94.9 93.5

In DGP 3, both error terms are heteroskedastic. In DGP 4, the idiosyncratic error term is generated as the autoregressive
process of lag 1 for each variable and with heteroskedastic. For coverage rates, the results for estimated factors and plug-ins
are based on asymptotic theory. The bootstrap coverage rates use the bootstrap equal-tailed percentile t method.

estimated factor and the plug-in estimator overestimates the magnitude of the bias, especially in

small samples. Both bootstrap methods outperform the plug-in estimator in terms of replicating

the bias size and correcting the distortion. In DGP 4, the idiosyncratic error terms exhibit not

only heteroskedasticity but also display serially dependence. In contrast to DGP 3, the bias size

increases as we introduce serial dependence in the error term of the factor model, and it is about

twice as large as that in DGP 3. This is consistent with the asymptotic bias result in Theorem 2.1,

19



where time-series dependence contributes to the bias. The plug-in bias is no longer overestimating

the bias size.7

Comparing the two bootstrap methods, it is evident that the autoregressive sieve with the CSD

bootstrap method performs better than the wild bootstrap method. Note that the wild bootstrap

is no longer valid under serial dependence. In fact, for some sample sizes, the wild bootstrap even

performs worse than the plug-in bias. We can also confirm that the autoregressive sieve + CSD

bootstrap procedure outperforms the plug-in bias and wild bootstrap procedure by comparing the

results of coverage rates. The coverage rates from AR sieve + CSD bootstrap outperform the

plug-in and wild bootstrap methods in all sample sizes.

Finally, we present the results of DGP 5 and 6, which are shown in Table 4. In DGP 5,

the idiosyncratic error term is only cross-sectionally correlated. The AR-sieve + CSD bootstrap

performs better than the wild bootstrap method but worse than the plug-in bias method. However,

AR-sieve + CSD recovers the size distortion better than the plug-in method in all sample sizes when

it comes to coverage rates. This is because there must be some variance effect when the bootstrap

method is used. In DGP 6, we allow for cross-sectional dependence as well as serial dependence in

the idiosyncratic error terms. The results follow a similar pattern to the findings of DGP 5. The

plug-in bias method replicates the bias better than bootstrap methods. However, it does worse than

AR-sieve+CSD bootstrap in terms of recovering the size distortion in the coverage rates. When

the time series dimension is as small as 50, the plug-in bias method performs even worse than the

wild bootstrap method, which is not valid in this design. Overall, the AR-sieve+CSD bootstrap

works well in correcting the distortion.

5 Empirical Application

In this section, we apply the factor-MIDAS regression model to validate the presence of bias in an

empirical example. It is well documented that incorporating high-frequency indicators to forecast

a quarterly variable using the MIDAS regression model improves the forecast performance (e.g.,

see Clements and Galvão (2008; 2009), Aastveit et al. (2017), Marcellino and Schumacher (2010),

Andreou, Ghysels, and Kourtellos (2013), and Beyhum and Striaukas (2024)).

7It is important to note that since the bias depends on the serial dependence, the persistence in the idiosyncratic
error term may also have an impact. We have observed that with an increase in persistence, the bias also increases
(refer to the additional table in Appendix D).
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Table 4: DGP 5 & DGP 6 - Bias and coverage rate of 95% CIs for β

N = 50 N = 100 N = 200

T = 50 100 200 50 100 200 50 100 200

TH = 150 300 600 150 300 600 150 300 600

DGP 5:
hetero &
CSD

bias

True Factor 0.00 -0.01 0.00 -0.01 0.00 0.00 0.01 0.00 0.00

Estimated Factor -0.37 -0.34 -0.32 -0.22 -0.19 -0.17 -0.12 -0.11 -0.10

Plug-in -0.41 -0.36 -0.35 -0.22 -0.20 -0.19 -0.11 -0.11 -0.10

WB -0.10 -0.10 -0.10 -0.06 -0.06 -0.04 -0.04 -0.04 -0.03

AR-sieve+CSD -0.16 -0.16 -0.16 -0.10 -0.10 -0.10 -0.06 -0.06 -0.06

95% coverage rate

Estimated Factor 75.0 72.6 63.9 85.0 85.5 84.4 88.5 90.3 91.0

Plug-in 80.9 87.9 88.9 86.8 89.3 92.1 88.9 91.1 92.5

WB 88.7 86.2 79.5 92.7 92.6 90.0 94.2 93.5 93.5

AR-sieve+CSD 90.9 90.0 87.0 93.3 94.1 92.3 94.3 93.9 93.7

DGP 6:
hetero &
CSD+AR

bias

True Factor 0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00

Estimated Factor -0.64 -0.57 -0.54 -0.41 -0.35 -0.31 -0.28 -0.21 -0.18

Plug-in -0.45 -0.42 -0.41 -0.26 -0.26 -0.25 -0.14 -0.14 -0.14

WB -0.08 -0.09 -0.08 -0.06 -0.06 -0.05 -0.04 -0.03 -0.03

AR-sieve+CSD -0.23 -0.23 -0.24 -0.17 -0.16 -0.16 -0.12 -0.10 -0.10

95% coverage rate

Estimated Factor 52.2 44.5 29.2 72.3 71.8 67.3 81.5 85.0 84.1

Plug-in 72.0 77.1 77.1 81.1 86.0 87.9 85.0 90.1 91.3

WB 76.5 66.2 47.4 87.5 84.2 77.6 91.1 91.5 89.3

AR-sieve+CSD 86.3 80.0 73.5 91.0 89.8 87.1 93.2 93.2 92.6

In DGP 5 and 6, both error terms are heteroskedastic. In DGP 5, the idiosyncratic error term contains the cross-sectional
dependence. In DGP 6, we impose the dependence in both dimensions for the idiosyncratic error terms. For coverage rates,
the results for estimated factors and plug-in are based on asymptotic theory. The bootstrap coverage rates use the bootstrap
equal-tailed percentile t method.

In this paper, we focus on nowcasting quarterly U.S. real GDP growth using monthly macroe-

conomic factors from 1984 Q1 to 2022 Q4 including great moderation period. We have divided

this period into two: the long period (1984 Q1 - 2022 Q4), which includes the COVID pandemic

period, and the short period (1984 Q1 to 2019 Q4). Our nowcasting model is similar to the model

in Beyhum and Striaukas (2024). Given the number of leading months, l = 1, 2, 3, we write our
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model as follows.

yt = β0 +

py∑
i=1

ρiyt−i + β′1

K−l∑
k=1−l

w(k−1)+l(θ)ft−1−(j−1)/m + εt, (18)

where yt is quarterly U.S. GDP growth rate. We denote common factors containing timely in-

formation about monthly macroeconomic predictors by ft−k/m. The number of leading months

represents a nowcasting horizon, denoted by h. For instance, l = 1 indicates that we exploit infor-

mation of one leading month; hence, we nowcast two months away (h = 2). We use the exponential

Almon lag with two parameters defined in (2) for the lag polynomial function. The quarterly U.S.

output is obtained from a FRED-QD dataset (for detail, see M. McCracken and Ng (2020)). As

U.S. real output is available in level in the dataset, we compute the growth rate in percentage, by

{ln(GDP)t − ln(GDP)t−1)} × 100. We also include the lags of the growth rate in the regression.

The number of lags of the dependent variable is chosen by BIC, before we apply MIDAS regression.

BIC selects one lag in the long period and three lags in the short period.

To estimate the monthly factors, we utilize the FRED-MD dataset8 (for detail, see M. W. Mc-

Cracken and Ng (2016)). We only consider the 74 macroeconomic variables available for the entire

period and exclude all financial variables. Using PCA, we extract two common factors in both

periods. The information criterion proposed by Bai and Ng (2002) (particularly, ICp) chooses eight

factors in the long period and five factors in the short period. Although the information criterion

chooses more than 2 factors, the two factors we extract explain more than 60% of the variability

explained by all the factors chosen by the information criterion proposed by Bai and Ng (2002).

Our primary goal is to verify the existence of bias in the estimators. Instead of focusing solely

on the forecasting performance of the factor-MIDAS regression model, we aim to examine the

behaviour of the estimators, particularly their 90% confidence interval. We present three sets of

confidence intervals, one based on asymptotic theory and the other two based on the bootstrap

method. We use two different bootstrap methods for resampling the idiosyncratic error terms in

the factor model: wild bootstrap and AR-sieve + CSD bootstrap, described in Section 3. We also

rotate the bootstrap estimators, β̃∗1 , with the rotation matrix H∗ as in GP (2014) and Gonçalves

and Perron (2020).

In Table 5, we present the confidence interval for the point estimates in the long period, 1984

8We use the ‘current’ version downloaded on October 3rd, 2023.
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Table 5: Estimates in the long period (1984 Q1 - 2023 Q4)

h = 2 h = 1 h = 0

0.90 0.83 0.99

constant

Asymptotic 0.67 1.01 0.67 0.99 0.78 1.21

WB 0.71 0.98 0.69 0.95 0.73 1.28

AR sieve+CSD 0.71 0.98 0.69 0.94 0.75 1.26

2.54 3.79 1.87

first factor

Asymptotic 1.64 3.44 2.97 4.61 0.31 3.44

WB 2.01 3.56 3.29 4.72 0.91 3.93

AR sieve+CSD 2.13 3.54 3.34 4.80 0.90 3.39

0.04 0.36 -0.95

second
factor

Asymptotic -0.22 0.30 0.08 0.65 -1.47 -0.43

WB -0.17 0.37 0.14 0.75 -1.62 -0.01

AR sieve+CSD -0.12 0.38 0.16 0.77 -1.63 -0.21

-0.30 -0.30 -0.58

yt−1

Asymptotic -0.54 -0.06 -0.52 -0.09 -0.87 -0.28

WB -0.49 -0.12 -0.44 -0.14 -1.25 -0.26

AR sieve+CSD -0.49 -0.12 -0.43 -0.14 -1.22 -0.25

The interval based on the asymptotic theory is obtained by adding and subtracting 1.645
times the heteroskedasticity robust standard errors. The confidence intervals based on
bootstrap methods are obtained with equal-tailed bootstrap intervals with a bootstrap
number 4999. WB indicates that we use wild bootstrap and AR sieve + CSD indicates
that we use the bootstrap algorithm described in Section 3.

Q1 - 2022 Q4 for each nowcasting horizon, h = 2, 1, and 0. We also report the estimate associated

with each parameter on the top of the three confidence intervals. The confidence intervals of the

intercept coefficient are similar, implying that there is no bias for the intercept estimator. However,

a bias does exist in the estimators associated with the factors. For example, the point estimate

associated with the first factor for horizon h = 2 is 2.54. The confidence interval of this estimate

is centered around 2.54, but the bootstrap interval shifts to the right, suggesting a negative bias.

The results are similar for the other horizons, h = 1 and 0. The second factor is not significant in

nowcasting the GDP growth rate when we are two months ahead. However, it is significant if we

are one month ahead (h = 1), or we are at the end of the quarter (h = 0). We can also confirm

that there exists a bias in the estimator associated with the second factor. When h = 1, the result
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implies a negative bias, whereas when h = 0, there exists a positive bias, shifting the interval to the

left. Comparing the two bootstrap methods, there is a small change in the bootstrap confidence

intervals of the estimators associated with the two factors. However, the difference is not huge,

indicating that the serial and cross-sectional dependence in this example may be small.

Table 6: Estimation result of long period (1984 Q1 - 2019 Q4)

h = 2 h = 1 h = 0

0.87 0.92 0.88

constant

Asymptotic 0.70 1.03 0.79 1.06 0.75 1.02

WB 0.76 1.03 0.84 1.09 0.77 1.02

AR sieve+CSD 0.79 1.05 0.86 1.11 0.79 1.04

-1.10 -1.34 -1.27

first factor

Asymptotic -1.48 -0.73 -1.67 -1.01 -1.53 -1.00

WB -1.52 -0.92 -1.78 -1.20 -1.61 -1.12

AR sieve+CSD -1.56 -0.98 -1.83 -1.27 -1.66 -1.16

0.09 -0.14 -0.01

second
factor

Asymptotic -0.67 0.84 -0.35 0.07 -0.58 0.56

WB -0.13 0.26 -0.40 0.03 -0.23 0.14

AR sieve+CSD -0.17 0.24 -0.48 0.02 -0.28 0.13

-0.11 -0.19 -0.17

yt−1

Asymptotic -0.24 0.03 -0.31 -0.06 -0.30 -0.04

WB -0.26 0.00 -0.33 -0.10 -0.31 -0.06

AR sieve+CSD -0.26 -0.01 -0.35 -0.11 -0.31 -0.06

-0.06 -0.09 -0.04

yt−2

Asymptotic -0.24 0.12 -0.24 0.05 -0.17 0.09

WB -0.24 0.08 -0.27 0.03 -0.17 0.08

AR sieve+CSD -0.24 0.08 -0.27 0.02 -0.18 0.07

-0.16 -0.14 -0.15

ρ3

Asymptotic -0.29 -0.02 -0.26 -0.03 -0.26 -0.03

WB -0.28 -0.04 -0.26 -0.04 -0.26 -0.04

AR sieve+CSD -0.29 -0.04 -0.27 -0.05 -0.26 -0.04

The interval based on the asymptotic theory is obtained by adding and subtracting 1.645
times the heteroskedasticity robust standard errors. The confidence intervals based on
bootstrap methods are obtained with equal-tailed bootstrap intervals with a bootstrap
number 4999. WB indicates that we use wild bootstrap and AR sieve + CSD indicates
that we use the bootstrap algorithm described in Section 3.
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In Table 6, we present the results after excluding the COVID pandemic period. The results

are similar to those shown in Table 5. When using the bootstrap method, the confidence intervals

associated with the factors shift. However, the bias does not have a significant impact on the

estimates for the lags of the dependent variable. Additionally, it is worth noting that as we exclude

the COVID period, the sign of the estimates associated with the two factors is reversed. Previously,

the slope coefficient for the aggregated factors was positive, whereas it becomes negative without

the COVID period. This suggests that monthly information during the COVID period has a

considerable influence on nowcasting the GDP growth rate.

6 Conclusion

In this paper, we derive the asymptotic distribution of the estimators in the factor-augmented MI-

DAS regression models. We find that there exists an asymptotic bias arising from the fact that the

factors are latent and must be estimated. We show that the bias depends on the serial dependence

as well as the cross-sectional dependence of the idiosyncratic error term in the factor model, be-

cause MIDAS temporally aggregates the factors and their lags. We propose two inference methods

that account for this bias: an analytical bias estimator based on the bias formula derived and a

bootstrap method. Both inference methods are robust to serial and cross-sectional dependence.

Although our simulation results support the theoretical results, the bootstrap method performs

better in terms of correcting the size distortion in the coverage rates. We also apply the factor-

MIDAS regression model to nowcasting quarterly U.S. GDP growth rate using monthly macroeco-

nomic factors. Our empirical results imply that there exists a bias in the estimates associated with

the estimated factors.

Our results can be extended to construct forecast intervals, similar to Gonçalves, Perron, and

Djogbenou (2017), where they construct it in the context of the factor-augmented regression models

without mixing the frequencies. By denoting by ŷT+1 = g(F̃T , α̃) the forecast of yT+1 based on

information up to time T , we can decompose the forecast error as

ŷT+1 − yT+1 = −εT+1 +
1√
T

∂g(F̃t, α)

∂α′

√
T (α̃− α) +

1√
N
β′H−1

√
N(F̃t(θ)−HFt(θ)) + op(1).

An interesting extension involves the use of machine-learning techniques. Machine learning tech-

niques are popularly used to handle high-dimensional data. Along the same lines, Babii, Ghysels,
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and Striaukas (2022) propose a machine learning regression by applying the sparse-group LASSO

technique for mixed-frequency data.
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A Primitive assumptions

This section delivers the primitive assumption for asymptotic theory. The factor-augmented MIDAS

regression involves two frequencies, thus we use two time indices: th = 1, . . . , TH denotes the high-

frequency time index and t = 1, . . . , T denotes the low-frequency time index. Particularly, we use

a subscript h to denote high-frequency time index (e.g. sh also denotes the high-frequency time

index).

Assumption A.1 (Factors and Factor Loadings)

(a) fth are stationary with E ∥fth∥
4 ≤ M and 1

TH

∑TH
th=1 fthf

′
th

p−→ Σf > 0, where Σf is a non-

random r × r matrix.

(b) The factor loadings λi are either deterministic such that ∥λi∥ ≤ M , or stochastic such that

E ∥λi∥4 ≤M . In either case, Λ′Λ/N
p−→ ΣΛ > 0, where ΣΛ is a non-random matrix.

(c) The eigenvalues of the r × r matrix (ΣΛΣf ) are distinct.

(d) f ′f/TH = Ir and Λ′Λ is a diagonal matrix with distinct entries, where f = (f1, . . . , fTH
)′.

Assumption A.2 (Time and Cross Section Dependence and Heteroskedasticity)

(a) E(ei,th) = 0, E|ei,th |8 ≤M .
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(b) E(ei,thej,sh) = σij,thsh , |σij,thsh | ≤ σ̄ij for all (th, sh) and |σij,thsh | ≤ τthsh for all (i, j) such

that 1
N

∑N
i,j=1 σ̄ij ≤M , 1

TH

∑TH
th,sh=1 τthsh ≤M , and 1

NTH

∑
th,sh,i,j

|σij,thsh | ≤M .

(c) For every (th, sh), E
∣∣N−1/2

∑N
i=1(ei,thei,sh − E(ei,thei,sh))

∣∣4 ≤M .

(d) E(ei,thej,th) = σij and E(ei,thej,th−k) = σij,k for all t and k.

Assumption A.3 (Moments and Weak Dependence Among {fth}, {λi} and {ei,th})

(a) E

(
1
N

∑N
i=1

∥∥∥ 1√
TH

∑TH
th=1 fthei,th

∥∥∥2) ≤M , where E(fthei,th) = 0 for all (i, th).

(b) For each th, E
∥∥∥ 1√

THN

∑TH
sh=1

∑N
i=1 fsh(ei,thei,sh − E(ei,thei,sh))

∥∥∥2 ≤M .

(c) E
∥∥∥ 1√

THN

∑TH
th=1 fthe

′
th
Λ
∥∥∥2 ≤M , where E(fthλ

′
iei,th) = 0 for all (i, th).

(d) E

(
1
TH

∑TH
th=1

∥∥∥ 1√
N

∑N
i=1 λiei,th

∥∥∥2) ≤M , where E(λiei,th) = 0 for all (i, th).

(e) As N → ∞, 1
N

∑N
i=1

∑N
j=1 λiλ

′
jei,thej,th − Γ

p−→ 0 and Γ ≡ limN→∞ V ar
(

1√
N

∑N
i=1 λiei,th

)
.

Assumption A.4 (Serial Dependence between {fth}, {λi} and {ei,th})

(a) 1
TH

∑TH
th=1 fthf

′
th−k

p−→ Σf,k, where Σf,k is a non-random r × r matrix.

(b) For each th and all k, E
∥∥∥ 1√

THN

∑TH
sh=1

∑N
i=1 fsh(ei,thei,sh−k − E(ei,thei,sh−k))

∥∥∥2 ≤M .

(c) E
∥∥∥ 1√

NTH

∑TH
th=1 fthe

′
th−kΛ

∥∥∥2 ≤M , where E(fthλ
′
iei,th−k) = 0 for all (i, th) and all k.

(d) As N → ∞, 1
N

∑N
i=1

∑N
j=1 λiλ

′
jei,thej,th−k − Γk

p−→ 0 and Γk ≡ limN→∞Cov
(
Λ′eth√

N
,
Λ′eth−k√

N

)
.

Assumption A.5 (Weak Dependence Between Idiosyncratic Errors and Regression Errors)

(a) For each t, E
∣∣∣ 1√

TN

∑T
s=1

∑N
i=1 εs(ei,t−j/mei,s−j/m − E(ei,t−j/mei,s−j/m))

∣∣∣2 ≤ M for j =

0, . . . ,m− 1.

(b) E
∥∥∥ 1√

TN

∑T
t=1

∑N
i=1 λiei,t−j/mεt

∥∥∥2 ≤ M , where E(λiei,t−j/mεt) = 0 for all (i, t) and j =

0, . . . ,m− 1.
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Assumption A.6 (Moments and CLT for the Score Vector)

(a) E(εt) = 0 and E |εt|2 < M .

(b) E ∥gα,t∥4 ≤M and 1
T

∑T
t=1 gα,tg

′
α,t

p−→ Σ > 0 where gα,t = ∂g(Ft, α)/∂α.

(c) As T → ∞, 1√
T

∑T
t=1 gα,tεt

d−→ N(0,Ω), where E
∥∥∥ 1√

T

∑T
t=1 gα,tεt

∥∥∥2 < M

and Ω ≡ limT→∞ V ar
(

1√
T

∑T
t=1 gα,tεt

)
> 0.

Assumption A.1 are standard assumptions on the factors and the factor loadings in the fac-

tor analysis. Additionally, we assume that the factors are stationary. This is to allow Σf =

plim 1
TH

∑TH
th=1 fthf

′
th

= plim 1
T

∑T
t=1 ft−j/mf

′
t−j/m, for all j. Assumption A.1-(d) is one of the iden-

tifying restrictions from Bai and Ng (2013). By imposing this assumption, the rotation matrix H0

is a diagonal matrix of ±1, where the sign is determined by f̃ ′f/TH . However, since the true factors

are unknown, we still do not know the sign of the rotation matrix.

Assumption A.2 and Assumption A.3 can be found equivalently in GP (2014) (their Assumptions

2 and 3, respectively). In Assumption A.2, we allow weak cross-sectional and serial dependence in

the idiosyncratic error terms. In Assumption A.3, we impose some moment condition between the

factors, idiosyncratic error terms, and the factor loadings. We also allow some weak dependence

among them. Due to the MIDAS structure, we also allow some serial dependence between them in

Assumption A.4. This assumption is new in the context of the factor-augmented regression models.

Without MIDAS structure, Assumption A.3 is sufficient. However, as the factors are temporally

aggregated with MIDAS structure, we introduce Assumption A.4.

We impose some weak dependence between idiosyncratic error terms and the regression errors in

Assumption A.5. This Assumption is equivalent to the Assumption 4 in GP (2014). Assumption A.6

imposes some moment condition on {εt} and the score vector gα,t. Assumption A.6-(b) requires

that we can apply a law of large numbers on {gα,tg′α,t}. By introducing Assumption A.6-(c), we

can apply a central limit theorem on {gα,tεt}. Similar assumptions to Assumption A.5 and A.6 can

be found in GP (2014).
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B Proof of results in Section 2

In this section, we prove the asymptotic distribution of NLS estimators in Theorem 2.1 and The-

orem 2.2, the consistency of the variance-covariance of the cross-sectional average of the factor

loadings and idiosyncratic error term across time for the plug-in bias estimator. To prove the asymp-

totic distribution, we use the following lemmas. The proof for the following lemmas Lemma B.1 to

Lemma B.3 can be found at the end of proof of Theorem 2.1.

Lemma B.1 1
T

∑T
t=1 εt(F̃t(θ)−HFt(θ)) = op(1).

Lemma B.2 If
√
T/N → c, where 0 ≤ c <∞,

(a) 1√
T

∑T
t=1(f̃t−j/m −HFt−j/m)(f̃t−j/m −Hft−j/m)′ = cV −1HΓHV −1 + op(1),

(b) 1√
T

∑T
t=1(f̃t−j/m −Hft−j/m)(f̃t−l/m −Hft−l/m)′ = cV −1HΓj−lHV

−1 + op(1),

(c) 1√
T

∑T
t=1Hft−j/m(f̃t−j/m −Hft−j/m)′ = cHΓQ′V −2 + op(1),

(d) 1√
T

∑T
t=1Hft−l/m(f̃t−j/m −Hft−j/m)′ = cQj−lΓQ

′V −2 + op(1).

Lemma B.3 If
√
T/N → c, where 0 ≤ c <∞,

(a) 1√
T

∑T
t=1(F̃t(θ)−HFt(θ))(F̃t(θ)−HFt(θ))

′

= cV −1Q
{∑K

k=1wk(θ)Γwk(θ) +
∑K

k=1

∑K
l ̸=k wk(θ)Γk−lwl(θ)

}
Q′V −1 + op(1),

(b) 1√
T

∑T
t=1(F̃t(θ)−HFt(θ))(HFt(θ))

′

= c
{∑K

k=1w
2
k(θ)H +

∑K
k=1

∑K
l ̸=k wk(θ)Qk−lwl(θ)

}
ΓQ′V −2 + op(1).

Note that we write Ft(θ) =
∑K

k=1wk(θ)ft−k/m, where wk(θ) ≡ diag(wk,1(θ1), . . . , wk,r(θr)) is a

r × r diagonal matrix. We also define δNTH
= min(

√
N,

√
TH). We first prove Theorem 2.1 and

then we prove Lemmas B.1 - B.3.

Proof of Theorem 2.1. As the NLS estimators α̃ maximizes the objective function Q̃T (α) =

− 1
T

∑T
t=1[yt − g(F̃t, α)]

2, we have

√
T (α̃− α) = −

[ 1
T

T∑
t=1

H(F̃t, αT )
]−1 1√

T

T∑
t=1

s(F̃t, α), (19)
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where αT is the intermediate between α̃ and α and H(F̃t, α) is a hessian matrix and s(F̃t, α) is a

score vector. For deriving the asymptotic distribution, we analyse the convergence of each term.

Let gα(·) = ∂g(·)/∂α. We write the term with a score vector as follows.

1√
T

T∑
t=1

s(F̃t, α) = 2
1√
T

T∑
t=1

[εt + β′H−1(HFt(θ)− F̃t(θ))]gα(F̃t, α)

= 2
1√
T

T∑
t=1

[εt + β′H−1(HFt(θ)− F̃t(θ))](Φ0gα(Ft, α) + Pt),

where where Φ0 = diag(1, H0, Ip) and H0 = plimH and Pt is a (1 + r + p)× 1 vector such that

Pt =


0

F̃t(θ)−HFt(θ)(
∂F̃t(θ)
∂θ H−1 − ∂Ft(θ)

∂θ

)′
β

 ,

with ∂F̃t(θ)′

∂θ = diag
(∂F̃1,t(θ1)

∂θ1
, . . . ,

∂F̃r,t(θr)
∂θr

)
is a r×r block-diagonal matrix. k-th block is ∂F̃k,t(θk)/∂θk,

which is a pj × 1 column vector, for j = 1, . . . , r. Under Assumption A.6 and Lemma B.1, we have

1√
T

∑T
t=1 εtgα(F̃t, α)

d−→ N(0,Φ0ΩΦ
′
0). The remaining term drives the bias in Theorem 2.1. Note

that the bias exists in the slope coefficients β1 and the weighting parameters θ. With respect to

β1, the remaining term is as follows.

1√
T

T∑
t=1

F̃t(θ)[HFt(θ)− F̃t(θ)]
′H−1′β1

= −

[
1√
T

T∑
t=1

(F̃t(θ)−HFt(θ))(F̃t(θ)−HFt(θ))
′ +

1√
T

T∑
t=1

HFt(θ)(F̃t(θ)−HFt(θ))
′

]
H−1′β1

= −c

V −1H


K∑
k=1

wk(θ)Γwk(θ) +
K∑
k=1

K∑
l ̸=k

wk(θ)Γk−lwl(θ)

HV −1

+


K∑
k=1

wk(θ)Hwk(θ) +
K∑
k=1

K∑
l ̸=k

wk(θ)Qk−lwl(θ)

ΓQ′V −2

plim(β̃1)

= −cBβ1 + op(1), (20)

where plim(β̃1) = H−1′β1. The second equality follows by applying Lemma B.3. Similarly, with
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respect to θ, we have

1√
T

T∑
t=1

∂F̃t(θ)
′

∂θ
H−1′β1β

′
1H

−1[HFt(θ)− F̃t(θ)]

= −H−1′β1 ◦
1√
T

T∑
t=1

F̃t,θ(θ)[F̃t(θ)−HFt(θ)]
′H−1′β1

= −cplim(β̃1) ◦

V −1H


K∑
k=1

∂wk(θ)

∂θ
Γwk(θ) +

K∑
k=1

K∑
l ̸=k

∂wk(θ)

∂θ
Γk−lwl(θ)

HV −1

+


K∑
k=1

∂wk(θ)

∂θ
Hwk(θ) +

K∑
k=1

K∑
l ̸=k

∂wk(θ)

∂θ
Qk−lwl(θ)

ΓQ′V −2

plim(β̃1)

= −cBθ + op(1), (21)

where F̃t,θ(θ) =
(
∂F̃1,t(θ1)

∂θ1
, . . . ,

∂F̃r,t(θr)
θr

)′
. To apply the lemmas, we use the Hadamard product such

that (A ◦B)ij = AijBij . By applying Hadamard product, we have ∂F̃t(θ)′

∂θ H−1′β = H−1′β ◦ F̃t,θ(θ)

to obtain the first equality. Then, we apply Lemma B.3 for the second equality. Finally, we have

1√
T

∑T
t=1 s(F̃t, α)

d−→ N(−cBα,Φ0ΩΦ
′
0). Next, we derive the term with Hessian matrix. First, we

rewrite the first term in (19) as follows.

1

T

T∑
t=1

H(F̃t, α) =
1

T

T∑
t=1

[
εt + β′H−1(HFt(θ)− F̃t(θ))

] ∂2g(F̃t, α)

∂α∂α′ +
1

T

T∑
t=1

∂g(F̃t, α)

∂α

∂g(F̃t, α)

∂α′ .

Under Assumption Assumption A.6 and Lemma B.1, 1
T

∑T
t=1 εt

∂2g(F̃t,α)
∂α∂α′ = op(1). We can also show

that − 1
T

∑T
t=1 β

′H−1(F̃t(θ)−HFt(θ))
∂2g(F̃t,α)
∂α∂α′ = op(1). Finally, for the second term, we have

1

T

T∑
t=1

∂g(F̃t, α)

∂α

∂g(F̃t, α)

∂α′ = Φ0ΣΦ
′
0 + op(1) (22)

where Σ ≡ E
[
∂g(Ft,α)

∂α
∂g(Ft,α)

∂α′

]
by replacing ∂g(F̃t,α)

∂α with Φ0
∂g(Ft,α)

∂α +Pt. Then, by Lemma B.2, we

have 1
T

∑T
t=1 gα(Ft, α)P

′
t = op(1) and

1
T

∑T
t=1 PtP

′
t = op(1). By plugging the terms, (20), (11), and

(22) into (19), we have
√
T (α̃− α)

d−→ N(−c(Φ0ΣΦ
′
0)

−1Bα,Φ
′−1
0 Σ−1ΩΣ−1Φ−1

0 ).

Next, we prove Lemmas we used to prove Theorem 2.1. We can obtain Lemma B.1 by applying

the arguments in the proof of Lemma 1.1 in GP (2014) (the only difference is that we use the high-

frequency and low-frequency time indices in our context). The proofs for (a) and (c) in Lemma B.2

are also similar to the proof of Lemma A.2, (a) and (b) in GP (2014). Therefore, we only show the
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proof for (b) and (d) in Lemma B.2.

Proof of Lemma B.2 - (b). First, we use the identity for the factor estimation error in GP

(2014) such that f̃th−Hfth = Ṽ −1 (A1,th +A2,th +A3,th +A4,th), where A1,th = 1
TH

∑TH
sh=1 f̃shγshth ,

A2,th = 1
TH

∑TH
sh
f̃shζshth , A3,th = 1

TH

∑TH
sh
f̃shηshth , and A4,th = 1

TH

∑TH
sh
f̃shξshth . Each term in

Ai,th for i = 1, 2, 3, 4 denotes the following: γshth = E
(

1
N

∑N
i=1 ei,shei,th

)
, ζshth = 1

N

∑N
i=1(ei,shei,th−

E(ei,shei,th)), ηshth = f ′sh
Λ′eth
N , and ξshth = f ′th

Λ′esh
N = ηthsh . Under this identity and using the low-

frequency notation, we have

1√
T

T∑
t=1

(f̃t−j/m −Hft−j/m)(f̃t−l/m −Hft−l/m)′

=
1√
T

T∑
t=1

[
Ṽ −1(A1,t−j/m +A2,t−j/m +A3,t−j/m +A4,t−j/m)

×(A1,t−l/m +A2,t−l/m +A3,t−l/m +A4,t−l/m)′Ṽ −1
]
,

for j = 1, . . . ,m−1. We analyse the convergence limit of each term, respectively. The proof is similar

to the proof of Lemma A.2 - (a) in GP (2014). By applying the Cauchy-Schwarz inequality, we have∥∥∥ 1
T

∑T
t=1A1,t−j/mA

′
1,t−l/m

∥∥∥ ≤
(

1
T

∑T
t=1∥A1,t−j/m∥2

)1/2 (
1
T

∑T
t=1∥A1,t−l/m∥2

)1/2
= Op(1/T ), by

Assumptions A.1 and A.2. This implies 1√
T

∑T
t=1A1,t−j/mA

′
1,t−l/m = op(1). We can also show that∥∥∥ 1

T

∑T
t=1A2,t−j/mA

′
2,t−l/m

∥∥∥ ≤
(

1
T

∑T
t=1

∥∥A2,t−j/m

∥∥2)1/2 ( 1
T

∑T
t=1

∥∥A2,t−l/m

∥∥2)1/2 = Op(N
−1δ−2

NTH
)

by Cauchy-Schwarz. We also use 1
T

∑T
t=1∥A2,t−j/m∥2 = Op(N

−1δ−2
NTH

) by Assumption A.2 and

1
TH

∑TH
sh=1 ∥f̃s−Hfs∥2 = Op(δ

−2
NTH

) in Bai and Ng (2006). Again, this implies 1√
T

∑T
t=1A2,t−j/mA

′
2,t−l/m =

op(1). Similarly, we can show all the terms are negligible, except the term 1
T

∑T
t=1A3,t−j/mA

′
3,t−l/m.

In fact, this term is Op(1/N), which is non-negligible when it is multiplied by
√
T under our as-

sumption,
√
T/N → c. To see this, we first rewrite the term as follows.

1

T

T∑
t=1

A3,t−j/mA
′
3,t−l/m =

1

T

T∑
t=1

(
1

TH

TH∑
t=1

(f̃s −Hfs +Hfs)ηs,t−j/m

)(
1

TH

TH∑
s=1

(f̃s −Hfs +Hfs)ηs,t−l/m

)′

= b33.1 + b33.2 + b′33.2 + b33.3

The first term b33.1 is bounded by
(

1
TH

∑TH
s=1∥f̃s −Hfs∥2

)(
1

TTH

∑T
t=1

∑TH
s=1 |ηs,t−j/mηs,t−l/m|

)
by

applying Cauchy-Schwarz inequality. This is Op(N
−1δ−2

NTH
) by 1

TTH

∑T
t=1

∑TH
sh=1 |ηsh,t−j/m|2 =

Op(N
−1) under Assumption A.3. Similarly, the second term is bounded by Cauchy-Schwarz such
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that b33.2 ≤
(

1
TH

∑TH
s=1

∥∥∥Hfs(f̃s −Hfs)
∥∥∥)( 1

TTH

∑T
t=1

∑TH
s=1 |ηs,t−j/mηs,t−l/m|

)
= Op(N

−1δ−1
NTH

).

Then, the final term is b33.3 = H
(
f ′f
TH

)[
1
T

∑T
t=1

(
Λ′et−j/m

N

)(
e′
t−l/m

Λ

N

)](
f ′f
TH

)
H ′ = Op(N

−1) by

Assumption A.3. Thus,

√
Tb33.3 =

√
T

N
H

[
1

T

T∑
t=1

(
Λ′et−j/m√

N

)(e′t−l/mΛ
√
N

)]
H = cHΓj−lH + op(1),

where we use f ′f
TH

= Ir by Assumptions A.1-(d) and A.4-(d). Finally, we have 1√
T

∑T
t=1(f̃t−j/m −

Hft−j/m)(f̃t−l/m −Hf
(m)
t−l/m)′ = cV −1HΓj−lHV

−1 + op(1).

Proof of Lemma B.2 - (d). The proof is similar to the proof of Lemma A.2 - (b) in GP

(2014). By using the identity we use in the proof of B.2-(b), we have

1√
T

T∑
t=1

Hft−l/m(f̃t−j/m −Hft−j/m)′ = H
1√
T

T∑
t=1

ft−l/m(A1,t−j/m +A2,t−j/m +A3,t−j/m +A4,t−j/m)′Ṽ −1

≡
√
TH(df1 + df2 + df3 + df4)Ṽ

−1.

We show the convergence limit for dfi, for i = 1, 2, 3, 4. We can show that all the terms except df4

is negligible. For example, df1 = Op(δ
−1
NTH

T−1/2) +Op(T
−1
H ). To show this, we first rewrite df1 as

1
T

∑T
t=1 ft−l/m

(
1
TH

∑TH
s=1(f̃s −Hfs)

′γs,t−j/m

)
+ 1

T

∑T
t=1 ft−l/m

(
1
TH

∑TH
s=1 f

′
sγs,t−j/m

)
H ′. The first

term of df1 is Op(δ
−1
NTH

T−1/2) by applying Assumptions A.1-A.2 and 1
TH

∑TH
sh=1 ∥f̃s − Hfs∥2 =

Op(δ
−2
NTH

). The second term is Op(T
−1
H ) by Cauchy-Schwarz inequality and Assumptions A.1 and

A.2. We can also show that ∥df2∥ = Op((TN)−1/2) by showing 1
TH

∑TH
s=1

∥∥∥ 1
T

∑T
t=1 ft−l/mζs,t−j/m

∥∥∥2 =
Op((TN)−1) under Assumption A.4-(b). The third term is also bounded by Cauchy-Schwarz in-

equality such that ∥df3∥ = Op((NT )
−1/2) and by applying Assumption A.4-(c). Finally, we de-

compose the last term into two parts as follows.

df4 =
1

T

T∑
t=1

ft−l/m

(
1

TH

TH∑
s=1

(f̃s −Hfs)
′ξs,t−j/m

)
+

1

T

T∑
t=1

ft−l/m

(
1

TH

TH∑
s=1

f ′sξs,t−j/m

)
H ′

≡ df4.1 + df4.2.

By rearranging the second term, we have df4.2 =
1√

THN

(
1
T

∑T
s=1 ft−l/mf

′
t−j/m

)(
1√

THN

∑TH
s=1 Λ

′esf
′
s

)
=

Op(1/(
√
THN)) by Assumptions A.4-(1) and A.3-(c). We can also rearrange the terms in the first
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term and write it as follows.

df4.1 =
1

T

T∑
t=1

ft−l/m

[
1

TH

TH∑
s=1

(f̃s −Hfs)
′
(
f ′t−j/m

Λ′es
N

)]

=

(
1

T

T∑
t=1

ft−l/mf
′
t−j/m

)(
1

TH

TH∑
s=1

Λ′es
N

(f̃s −Hfs)
′

)
.

This is Op(1/N) under our assumptions. By using 1
TH

∑TH
s=1

Λ′es
N (f̃s−Hfs)

′ = 1
N (Γ+ op(1))Q

′V −1,

from the proof in GP (2014), we have

√
THdf4.1 = H

(
1

T

T∑
t=1

ft−l/mf
′
t−j/m

)(√
T

N
(Γ + op(1))Q

′V −1

)
= cQj−lΓQ

′V −1 + op(1)

Thus,
√
Tdf4.1Ṽ

−1 = cQj−lΓQ
′V −2+op(1), whereQj−l =

1
T

∑T
t=1 f̃t−j/mft−l/m = 1

TH

∑TH
t=1 f̃tft−(j−l).

Proof of Lemma B.3 - (a). We write the equation as follows.

1√
T

T∑
t=1

(F̃t(θ)− Ft(θ))(F̃t(θ)−HFt(θ))
′

=
1√
T

 K∑
j=1

wj(θ)(f̃t−j/m −Hft−j/m)

 K∑
j=1

wj(θ)(f̃t−j/m −Hft−j/m)

′

=

K∑
j=1

wj(θ)

[
1√
T

T∑
t=1

(f̃t−j/m −Hft−j/m)(f̃t−j/m −Hft−j/m)′

]
wj(θ)

+
K∑
j=1

K∑
l ̸=j

wj(θ)

[
1√
T

T∑
t=1

(f̃t−j/m −Hft−j/m)(f̃t−l/m −Hft−l/m)′

]
wl(θ)

= cV −1Q


K∑
j=1

w2
j (θ)Γ +

K∑
j=1

K∑
l ̸=j

wj(θ)Γj−lwl(θ)

Q′V −1 + op(1).

By applying Lemmas B.2-(a) and (b), the result follows immediately.
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Proof of Lemma B.3 - (b). Similar to previous proof, we rewrite the equation as follows.

1√
T

T∑
t=1

HFt(θ)(F̃t(θ)−HFt(θ))
′

=
1√
T

 K∑
j=1

wj(θ)Hft−j/m)

 K∑
j=1

wj(θ)(f̃t−j/m −Hft−j/m)

′

=
K∑
j=1

wj(θ)

[
1√
T

T∑
t=1

Hft−j/m(f̃t−j/m −Hft−j/m)′

]
wj(θ)

+
K∑
j=1

K∑
l ̸=j

wj(θ)

[
1√
T

T∑
t=1

Hft−l/m(f̃t−j/m −Hft−j/m)′

]
wl(θ)

= c


K∑
j=1

w2
j (θ)H +

K∑
j=1

K∑
l ̸=j

wj(θ)Qj−lwl(θ)

ΓQ′V −2 + op(1).

By applying Lemmas B.2-(c) and (d), the result follows.

Next, we prove Theorem 2.2 and Proposition 2.1. To prove Theorem 2.2, we first prove the

case when there is no cross-sectional dependence (only serial correlation) in the idiosyncratic term

in the factor model, and then we prove when the cross-sectional dependence is allowed.

Proof of Theorem 2.2.

If the idiosyncratic terms are serially correlated, but not cross-sectionally correlated, note that

Γk = limN→∞
1
N

∑N
i=1 λiλ

′
iE(ei,thei,th−k). Recall that the estimator for Γk under serial dependence

without cross-sectional dependence is Γ̂k = 1
N(TH−k)

∑TH
th=k+1

∑N
i=1 λ̃iλ̃

′
iẽi,th ẽi,th−k. To show that

Γ̂k −H−1′
0 ΓkH

−1
0 → 0, we can use the arguments in the proof of Theorem 6 in Bai (2003). In fact,

we can use the fact that ẽi,th = ei,th + Op(δ
−1
NTH

) and λ̃i = H−1′λi + Op(δ
−1
NTH

), and rewrite Γ̂k as

follows.

Γ̂k = H−1′ 1

N(TH − k)

TH∑
th=k+1

N∑
i=1

λiλ
′
iei,thei,th−kH

−1 + op(1).

Since we have 1
TH−k

∑TH
th=k+1 ei,thei,th−k → E(ei,thei,th−k) and H → H0, we can show that Γ̂k −

H−1′
0 ΓkH

−1
0

p−→ 0.

Next, we prove the case when the idiosyncratic terms are serially and cross-setionally corre-

lated, we can use the arguments in the proof of Theorem 4 in Bai and Ng (2006). Under Assump-

tion A.2 - (d), we have σij,k = E(ei,thej,th−k). Let σ̃ij,k = 1
TH−k

∑TH
th=k+1 ẽi,th ẽi,th−k and Γn,k =
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1
n

∑n
i=1

∑n
j=1 σij,kλiλ

′
j . By the definition, Γk = limn→∞ Γn,k. Let Γ̄n,k = 1

n

∑n
i=1

∑n
j=1 σ̃ij,kλiλ

′
j .

Then, we can write

Γ̂k −H−1′ΓkH
−1 = Γ̂k −H−1′Γ̄n,kH

−1 +H−1′(Γ̄n,k − Γn,k)H
−1 +H−1′(Γn,k − Γk)H

−1.

Since Γk is the limit of Γn,k, we have Γn,k−Γk → 0. The remaining parts to show are Γ̄n,k−Γn,k
p−→ 0

if n/N → 0 and n/TH → 0 and Γ̂k −H−1′Γ̄n,kH
−1 p−→ 0. We first rewrite Γ̄n,k − Γn,k as follows.

Γ̄n,k − Γn,k =
1

n

n∑
i=1

n∑
j=1

(σ̃ij,k − σij,k)λiλ
′
j

=
1

n

n∑
i=1

n∑
j=1

1

TH − k

TH∑
th=k+1

(ei,thej,th−k − σij,k)λiλ
′
j

− 1

n

n∑
i=1

n∑
j=1

1

TH − k

TH∑
th=k+1

ei,th(cj,th−k − c̃j,th−k)λiλ
′
j

− 1

n

n∑
i=1

n∑
j=1

1

TH − k

TH∑
th=k+1

ej,th−k(ci,th − c̃i,th)λiλ
′
j

+
1

n

n∑
i=1

n∑
j=1

1

TH − k

TH∑
th=k+1

(ci,th − c̃i,th)(cj,th−k − c̃j,th−k)λiλ
′
j

= I + II + III + IV ,

where we obtain the second equality by using the decomposition such that ẽi,th ẽj,th−k = ei,thej,th−k−

ei,th(cj,th−k − c̃j,th−k)− ej,th−k(ci,th − c̃i,th) + (ci,th − c̃i,th)(cj,th−k − c̃j,th−k), where c̃i,th = λ̃′if̃th and

ci,th = λ′ifth . We can show that I is Op((TH − k)−1/2) since it is zero mean process. By using

cj,th − c̃j,th = (H−1′λj − λ̃j)
′f̃th + λ′jH

−1(Hfth − f̃th) and following Bai and Ng (2006), we have

II → 0 if
√
n/TH → 0 and n/δ2NTH

→ 0. Similarly, we have III → 0 as n/δ2NTH
→ 0. Finally, for

IV , by Cauchy-Schwarz inequality, we have

∥IV ∥ ≤

 1

TH − k

TH∑
th=k+1

∥∥∥∥∥ 1√
n

n∑
i=1

(ci,th − c̃i,th)λi

∥∥∥∥∥
2
1/2 1

TH − k

TH∑
th=k+1

∥∥∥∥∥ 1√
n

n∑
i=1

(cj,th−k − c̃j,th−k)λj

∥∥∥∥∥
2
1/2

.
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Since ci,th − c̃i,th = (H−1λi − λ̃i)
′f̃th + λ′iH

−1(Hfth − f̃th), by using cr inequality,

1

TH − k

TH∑
th=k+1

∥∥∥∥∥ 1√
n

n∑
i=1

(ci,th − c̃i,th)λ

∥∥∥∥∥
2

≤ 2

 1

TH − k

TH∑
th=k+1

∥fth∥
2

∥∥∥∥∥ 1√
n

n∑
i=1

λi(H
−1′λi − λ̃i)

′

∥∥∥∥∥
2

+ 2
∥∥H−1

∥∥2( 1

n

n∑
i=1

∥λi∥2
)2

1

TH − k

TH∑
th=k+1

∥∥∥f̃th −Hfth

∥∥∥2 .
The first term term and the second term converge to zero as

√
n/T → 0 and n/TH → 0. The last

remaining term is Γ̂k −H−1′Γ̄n,kH
−1. We can rewrite this term as follows.

Γ̂k −H−1′Γ̄n,kH
−1 =

1

n

n∑
i=1

n∑
j=1

σ̃ij,k(λ̃iλ̃
′
j −H−1′λiλ

′
jH

−1)

=
1

n

n∑
i=1

n∑
j=1

(σ̃ij,k − σij,k)(λ̃iλ̃
′
j −H−1′λiλ

′
jH

−1) +
1

n

n∑
i=1

n∑
j=1

σij,k(λ̃iλ̃
′
j −H−1′λiλ

′
jH

−1)

= I + II.

Then, I → 0 using the fact that it is zero mean process. We decompose the second term II as

follows.

II =
1

n

n∑
i=1

n∑
j=1

σij,k(λ̃i −H−1λi)λ̃
′
j +

1

n

n∑
i=1

n∑
j=1

σij,kλiH
−1(λ̃j −H−1′λj)

′ = a+ b.

Then, we can show that a→ 0 and b→ 0 since a and b are of order Op(T
−1/2
H ) +Op(δ

−2
NTH

). Since

H
p−→ H0, we can complete the proof.

The proof of Proposition 2.1 is straightforward by applying Theorem 2.2.

C Proof of results in Section 3

In this section, we first deliver the bootstrap high-level conditions under which our bootstrap

data generating process yields a consistent bootstrap distribution. Our bootstrap data generating

process (DGP) is similar to the one proposed by GP (2014). Let {e∗th = (e∗1,th , . . . , e
∗
N,th

)′} be a

bootstrap sample from {ẽth = (ẽ1,th , . . . , ẽN,th)
′}, where ẽth = Xth − Λ̃f̃th are the residuals from

the original panel dataset. {ε∗t } are the resampled bootstrap residuals from {ε̃t = yt − g(F̃t; α̃)}.

Using these two bootstrap samples, {e∗th} and {ε∗t }, the bootstrap data generating process (DGP)
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is as follows.

X∗
th

= Λ̃f̃th + e∗th , for th = 1, . . . , TH ,

y∗t = β̃0 + β̃′1F̃t(θ̃) + ε∗t , for t = 1, . . . , T.

We can obtain the bootstrap estimators by following a two-step process that is similar to the

procedure used in the original sample: in the first step, we estimate the factors from a new bootstrap

panel dataset X∗
th

and denote them by f̃∗th , then in the second step, by regressing y∗t on 1 and

F̃ ∗
t (θ̃), we can obtain the bootstrap estimators. We denote these estimators by α̃∗, which are

the analogues of NLS estimators from the original sample. Below conditions are our bootstrap

high-level conditions. The conditions are very similar to those of GP (2014).

Condition C.1* (Weak Time Series and Cross Section Dependence in e∗ith)

(a) E∗(e∗i,th) = 0 for all (i, th).

(b) 1
TH

∑TH
th=1

∑TH
sh=1 |γ∗shth |

2 = Op(1), where γ
∗
shth

= E∗
(

1
N

∑N
i=1 e

∗
i,th
e∗i,sh

)
.

(c) 1
T 2
H

∑TH
th=1

∑TH
sh=1E

∗
∣∣∣ 1√

N

∑N
i=1(e

∗
i,th
e∗i,sh − E∗(e∗i,the

∗
i,sh

))
∣∣∣2 = Op(1).

Condition C.2* (Weak Dependence Among f̃th, λ̃i, and ẽ∗i,th)

(a) 1
TH

∑TH
th=1

∑TH
sh=1 f̃sh f̃

′
th
γ∗shth = Op(1).

(b) 1
TH

∑TH
th=1E

∗
∥∥∥ 1√

THN

∑TH
sh=1

∑N
i=1 f̃sh(e

∗
i,th
e∗i,sh − E∗(e∗i,the

∗
i,sh

))
∥∥∥2 = Op(1).

(c) E∗
∥∥∥ 1√

THN

∑TH
th=1

∑N
i=1 f̃th λ̃

′
ie

∗
i,th

∥∥∥2 = Op(1).

(d) 1
TH

∑TH
th=1E

∗
∥∥∥ 1√

N

∑N
i=1 λ̃ie

∗
i,th

∥∥∥2 = Op(1).

(e) 1
TH

∑TH
th=1

(
Λ̃′e∗th√

N

)(
e∗

′
th

Λ̃
√
N

)
−Γ̃ = op∗(1), in probability, where Γ̃ ≡ 1

TH

∑TH
th=1Var

∗
(

1√
N
Λ̃′e∗th

)
>

0.

Condition C.3* (Serial Dependence among f̃th, λ̃i, and ẽ∗i,th)

(a) 1
TH

∑TH
th=1E

∗
∥∥∥ 1√

THN

∑TH
sh=1

∑N
i=1 f̃sh(e

∗
i,th
e∗i,sh−k − E∗(e∗i,the

∗
i,sh−k))

∥∥∥2 = Op(1) for all k.

(b) E∗
∥∥∥ 1√

THN

∑TH
th=1 f̃the

∗′
th−kΛ̃

∥∥∥2 = Op(1) for all k.
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(c) 1
TH

∑TH
th=1

(
Λ̃e∗th√

N

)(
e∗

′
th−kΛ̃√

N

)
−Γ̃k = op∗(1), in probability, where Γ̃k ≡ 1

TH

∑TH
th=1Cov

∗
(

Λ̃′e∗th√
N
,
Λ̃′e∗th−k√

N

)
>

0.

Condition C.4* (Weak Dependence Between e∗i,th and ε∗t )

(a) 1
T

∑T
t=1E

∗
∣∣∣ 1√

TN

∑T
s=1

∑N
i=1 ε

∗
s(e

∗
i,t−j/me

∗
i,s−j/m − E∗(e∗i,t−j/me

∗
i,s−j/m))

∣∣∣2 = Op(1) for j =

0, . . . ,m− 1.

(b) E∗
∥∥∥ 1√

TN

∑T
t=1

∑N
i=1 λ̃ie

∗
i,t−j/mε

∗
t

∥∥∥2 = Op(1), where E(e∗i,t−j/m) = 0 for all (i, t) and j =

0, . . . ,m− 1.

Condition C.5* (Bootstrap CLT)

(a) E∗(ε∗t ) = 0 and 1
T

∑T
t=1E

∗ |εt|2 = Op(1).

(b) Ω̃−1/2 1√
T

∑T
t=1 g̃α,tε

∗
t

d∗−→ N(0, Ir+p), in probability, where E∗
∥∥∥ 1√

T

∑T
t=1 g̃α,tε

∗
t

∥∥∥2 = Op(1) and

g̃α,t = ∂g(F̃t, α)/∂α, and Ω̃ ≡ Var∗
(

1√
T

∑T
t=1 g̃α,tε

∗
t

)
> 0.

Condition C.6* (Bootstrap Consistency)

(a) plim Ω̃ = Φ0ΩΦ
′
0, where Ω̃ = V ar∗

(
1√
T

∑T
t=1 g̃α,tε

∗
t

)
and g̃α,t ≡ ∂g(F̃t, α)/∂α.

(b) plim Γ̃ = H0ΓH
′
0 and plim Γ̃j−l = H0Γj−lH

′
0.

Conditions C.1* through C.4* are the bootstrap analogues of Assumptions A.1 to A.6 in Ap-

pendix A. Conditions C.1*-C.2* are similar to the bootstrap high level conditions in GP (2014).

The mean of bootstrap residuals are required to be zeros for all (i, th), which implies that we need

to recenter the residuals when we resample them. Unlike in GP (2014), since our bias contains the

serial dependence, we impose weak serial dependence among f̃th , λ̃i and e
∗
i,th

in Condition C.3*.

Note that since f̃th and λ̃i are fixed in the bootstrap world, serial dependence in the factors can

be implied by restricting the serial dependence of ei,th . Condition C.4* is similar to Condition C*

in GP (2014), and we restrict the dependence between two bootstrap residuals. Condition C.5*

implies that we can apply a central limit theorem on the score vector, g̃α,tε
∗
t . In Condition C.6*, we

provide conditions for consistency of the bootstrap distribution. In Condition C.6*-(a), Ω denotes

the bootstrap variance of the score vector in the bootstrap world and it is a bootstrap analogue
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of Ω. It implies that the bootstrap variance is rotated with a block diagonal matrix, Φ0. This

is because the score vector g̃α,t =
(
F ′
t(θ)H

′, β′ ∂Ft(θ)
∂θ′

)′
is a rotated version of gα,t, where the ro-

tation is given by Φ0. Similarly, Γ̃ and Γ̃j−l, defined in Condition C.2* and Condition C.3* are

the bootstrap analogues of Γ and Γj−l, respectively. Condition C.6*-(a) and (b) imply that it is

crucial how we mimic the error terms of the MIDAS regression and the idiosyncratic factor error

terms in the bootstrap world. Moreover, in our context, since the bias depends on both serial and

cross-sectional dependence of eth , the idiosyncratic error term in the bootstrap world should mimic

the dependence in the time series and cross-sectional dimension.

Remark 1 Note that α̃∗ is obtained by regressing y∗t on 1 and a temporally aggregated version of

the lags of the bootstrap estimated factors, F̃ ∗
t (θ̃). The bootstrap estimated factors, f̃∗th, consistently

estimate the rotated version of true “latent” bootstrap factors, H∗f̃th, where H∗ = Ṽ ∗−1 f̃∗′f̃
TH

Λ̃′Λ̃
N

and Ṽ ∗ is the r × r diagonal matrix containing on the main diagonal the r largest eigenvalues of

X∗X∗′/NTH , in decreasing order. This matrix is the bootstrap analogue of the rotation matrix in

the original sample, H = Ṽ −1 f̃ ′f
TH

Λ′Λ
N . As discussed in GP (2014), the indeterminacy of the rotation

matrix is not a problem in the bootstrap world, as H∗ does not depend on the population values.

Moreover, H∗ is asymptotically equal to H∗
0 = diag(±1), where the sign is determined by the sign

of f̃∗′f̃/TH . This implies that the bootstrap factors are identified up to a change of sign.

Remark 2 Similar to the discussion in GP (2014) regarding the rotation of the bootstrap estima-

tors, our NLS estimators of bootstrap DGP rotate due to the rotation in the factors in the bootstrap

world. Note that we can rewrite y∗t as follows.

y∗t = β̃0 + β̃′1H
∗−1F̃ ∗

t (θ̃) + β̃′1H
∗−1(H∗F̃t(θ̃)− F̃ ∗

t (θ̃)) + ε∗t = g(F̃ ∗
t , α̃) + ξ∗t ,

where g(F̃ ∗
t , α̃) ≡ β̃0 + β̃′1H

∗−1F̃ ∗
t (θ̃) and ξt ≡ β̃′1H

∗−1(H∗F̃t(θ̃)− F̃ ∗
t (θ̃)) + ε∗t . Thus, α̃∗ estimates

(Φ∗)−1α̃, where Φ∗ = diag(1, H∗, Ip) is a block diagonal matrix. (Φ∗)−1α̃ are the rotated version of

NLS estimators in the original sample. As H∗ is asymptotically equal to H∗
0 , (Φ

∗)−1α̃ is equal to

(Φ∗
0)

−1α̃, where Φ∗
0 = diag(1, H∗

0 , Ip), and (Φ∗
0)

−1α̃ is the sign-adjusted version of α̃.

Lemma C.1 Let the Assumptions A.1-A.5 in Appendix A hold and consider any residual-based

bootstrap scheme for which Conditions C.1*-C.5* are verified. Suppose
√
T/N → c, 0 ≤ c < ∞.

In addition, let the two following conditions hold: (1) Condition C.6*-(a) is verified and (2) c = 0
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or Condition C.6*-(b) is verified; then as N,T → ∞,

√
T (α̃∗ − (Φ∗

0)
−1α̃)

d∗−→ N(−c(Φ∗
0)

−1∆α, (Φ
∗
0)

−1Σα(Φ
∗
0)

−1),

in probability and ∆α and Σα are defined in Theorem 2.1.

Remark 3 In Lemma C.1, we derive the bootstrap distribution of the estimators, α̃∗. According

to Lemma C.1, the distribution of
√
T (α̃∗ − (Φ∗

0)
−1α̃) follows a normal distribution with a non-

zero mean vector, −c(Φ∗
0)

−1∆α. The asymptotic bias is proportional to (H∗
0 )

−1β̃. However, the

weighting parameters θ̃∗ are not affected by the rotation problem.

Remark 4 To match the bootstrap distribution with the limiting distribution of the estimators

in the original sample to achieve bootstrap consistency since our rotation matrix H∗ may not be

an identity matrix. Therefore, we consider the rotated version of our bootstrap results, given by
√
T (Φ∗α̃∗ − α̃). For the consistency of the rotated bootstrap results, we rely on the Corollary 3.1.

in GP (2014) such that supx∈Rr+p |P ∗(
√
T (Φ∗

0α̃
∗ − α̃) ≤ x)− P (

√
T (α̃− α) ≤ x)| p−→ 0. For detail,

see GP (2014). This corollary justifies the use of a residual-based bootstrap method in the context

of the factor-MIDAS regression models.

Notation: P ∗ denotes the bootstrap probability measure, conditional on the original sample.

The bootstrap measure P ∗ depends on the original sample size N , T and TH , and sample realization

ω, but for a simpler notation, we omit these and write P ∗ for P ∗
NT,ω. We write T ∗

NT = op∗(1), in

probability, or T ∗
NT

p∗−→ 0, in probability, for any bootstrap test statistics T ∗
NT , if, when for any δ > 0,

P ∗(|T ∗
NT | > δ) = op(1). If for all δ > 0, there exists Mδ < ∞ such that limN,T→∞ P [P ∗(|T ∗

NT | >

Mδ) > δ] = 0, we write as T ∗
NT = Op∗(1), in probability. We write T ∗

NT
d∗−→ D, in probability, if T ∗

NT

weakly converges to the distribution D under P ∗, conditional on a sample with probability that

converges to one, i.e. E∗(f(T ∗
NT ))

p−→ E(f(D)) for all bounded and uniformly continuous function

f .

Lemma C.2 1
T

∑T
t=1 ε

∗
t (f̃

∗
t−j/m −H∗f̃t−j/m) = op∗(1).

Lemma C.3 If
√
T/N → c, where 0 ≤ c <∞,

(a) 1√
T

∑T
t=1(f̃

∗
t−j/m −H∗f̃t−j/m)(f̃∗t−j/m −H∗f̃t−j/m)′ =

√
T

N Ṽ ∗−1H∗Γ∗H∗Ṽ ∗−1 + op∗(1),
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(b) 1√
T

∑T
t=1(f̃

∗
t−j/m −H∗f̃t−j/m)(f̃∗t−l/m −H∗f̃t−l/m)′ =

√
T

N Ṽ ∗−1H∗Γ∗
j−lH

∗Ṽ ∗−1 + op∗(1),

(c) 1√
T

∑T
t=1H

∗f̃t−j/m(f̃∗t−j/m −H∗f̃t−j/m)′ =
√
T

N H∗Γ∗
(

1
TH

∑TH
sh=1 f̃sh f̃

∗′
sh

)
Ṽ ∗−2 + op∗(1),

(d) 1√
T

∑T
t=1H

∗f̃t−l/m(f̃∗t−j/m−H∗f̃t−j/m)′ =
√
T

N H∗
(

1
T

∑T
t=1 f̃t−l/mf̃

′
t−j/m

)
Γ∗
(

1
TH

∑TH
sh=1 f̃sh f̃

∗′
sh

)
Ṽ ∗−2+

op∗(1).

Lemma C.4 If
√
T/N → c, where 0 ≤ c <∞,

(a) 1√
T

∑T
t=1(F̃

∗
t (θ̃)−H∗F̃t(θ̃))(F̃

∗
t (θ̃)−H∗F̃t(θ̃))

′

= cH∗
0 Ṽ

−1
(∑K

j=1wj(θ̃)Γ
∗wj(θ̃) +

∑K
j=1wj(θ̃)Γ

∗
j−lwl(θ̃)

)
Ṽ −1H∗

0 + op∗(1),

(b) 1√
T

∑T
t=1H

∗F̃t(θ̃)(F̃
∗
t (θ̃)−H∗F̃t(θ̃))

′

= cH∗
0

[∑K
j=1w

2
j (θ̃) +

∑K
j=1

∑K
l ̸=j wj(θ̃)

(
1
T

∑T
t=1 f̃t−l/mf̃

′
t−j/m

)
wl(θ̃)

]
Γ∗Ṽ −2H∗

0 + op∗(1).

Proof of Lemma C.1. Since in the bootstrap world, α̃∗ maximizes the following objective

function:

Q̃∗
T (α̃) = − 1

T

T∑
t=1

[yt − g(F̃ ∗
t , α̃)]

2.

where g(F̃ ∗
t , α̃) = β̃′H∗−1F̃ ∗

t (θ̃). Then, we have

√
T (α̃∗ − (Φ∗)−1α̃) = −

[
1

T

T∑
t=1

H(F̃ ∗
t , α̃T )

]−1
1√
T

T∑
t=1

s(F̃ ∗
t , α̃),

where s(F̃ ∗
t , α̃) is a score vector and H(F̃ ∗

t , α̃) is a Hessian matrix in the bootstrap world. α̃T is

intermediate between α̃ and α̃∗. We analyse each term. We can write the score vector as follows.

1√
T

T∑
t=1

s(F̃ ∗
t , α̃) =

1√
T

T∑
t=1

[ε∗t + β̃′H∗−1(H∗F̃t(θ̃)− F̃ ∗
t (θ̃))]

∂g(F̃ ∗
t , α̃)

∂α̃
,

where the partial derivative is

∂g(F̃ ∗
t , α̃)

∂α̃
= Φ∗∂g(F̃t, α)

∂α
+ P ∗

t , where P
∗
t =


0

F̃ ∗
t (θ̃)−H∗F̃t(θ)(∂F̃ ∗

t (θ̃)
′

∂θ̃
H∗−1′ β̃ − ∂F̃t(θ)′

∂θ H−1′β
)

 ,
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and Φ∗ = diag(1, H∗, Ip). Under this decomposition, we can analyse 1√
T

∑T
t=1 ε

∗
t
∂g(F̃ ∗

t ,α̃)
∂α̃ into two

non-zero blocks of P ∗
t . The second block can be written as follows.

1√
T

T∑
t=1

ε∗t (F̃
∗
t (θ̃)−H∗F̃t(θ))

=
1√
T

T∑
t=1

ε∗t

 K∑
j=1

wj(θ̃)(f̃
∗
t−j/m −H∗f̃t−j/m) +

K∑
j=1

(wj(θ̃)− wj(θ))H
∗f̃t−j/m


=

K∑
j=1

wj(θ̃)
1√
T

T∑
t=1

ε∗t (f̃
∗
t−j/m −H∗f̃t−j/m) +

K∑
j=1

(wj(θ̃)− wj(θ))H
∗ 1√

T

T∑
t=1

ε∗t f̃t−j/m

= op∗(1).

Since θ̃
p−→ θ and weighting function is continuous function, we can use continuous mapping theorem

and have the second part as op(1). By Lemma C.2 we can show that the first part is op∗(1). The

third part can be argued similarly. Since it is easier to check for each row, we write k-th row of the

third block in P ∗
t as

(∂F̃ ∗
k,t(θ̃k)

∂θ̃k
H∗−1′

k β̃k −
∂F̃k,t(θk)

∂θk
H−1′

k βk
)
. Then, for this k-th row, we can write it

as follows.

1√
T

T∑
t=1

ε∗t

(
∂F̃ ∗

k,t(θ̃k)

∂θ̃k
H∗−1′

k β̃k −
∂F̃k,t(θk)

∂θk
H−1′

k βk

)

= H∗−1′

k β̃k

 1√
T

T∑
t=1

ε∗t

K∑
j=1

∂wj,k(θ̃k)

∂θ̃k
(f̃∗k,t−j/m −H∗

k f̃k,t−j/m)

+
1√
T

T∑
t=1

ε∗t

K∑
j=1

{
∂wj,k(θ̃k)

∂θ̃k
−
∂wj,k(θk)

∂θk

}
f̃k,t−j/m


+ (β̃k −H−1′

k βk)
1√
T

T∑
t=1

ε∗t

 K∑
j=1

∂wj,k(θk)

∂θk
f̃k,t−j/m


= op∗(1),

where Hk is the k-th diagonal element in the rotation matrix H and βk is the k-th slope parameter

in β. We can obtain the second equality because β̃
p−→ H−1′β and Lemma C.2. Finally, we have

the following result.

1√
T

T∑
t=1

ε∗t
∂g(F̃t; α̃)

∂α̃

d∗−→ N(0,Φ∗
0Ω̃Φ

∗
0), (23)
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where Φ∗
0 = plimΦ∗, Ω̃ ≡ Var∗

(
1√
T

∑T
t=1 ε

∗
t g̃α,t

)
, and g̃α,t = ∂g(F̃t, α)/∂α.

Now, we analyse the second term in the score vector 1√
T

∑T
t=1 β̃

′H∗−1(H∗F̃t(θ̃)− F̃ ∗
t (θ̃))

∂g(F̃ ∗
t ,α)

∂α̃

with respect to β̃ and θ̃, respectively. (Note that there is no bias with respect to β̃0, therefore we

focus on β̃1 here.) By Lemma C.4, the score vector with respect to β̃1 can be written as follows.

1√
T

T∑
t=1

(H∗F̃t(θ̃)− F̃ ∗
t (θ̃))F̃

∗
t (θ̃)

′H∗−1′ β̃1

= −

[
1√
T

T∑
t=1

(F̃ ∗
t (θ̃)−H∗F̃t(θ̃))(F̃

∗
t (θ̃)−H∗F̃t(θ̃))

′ +
1√
T

T∑
t=1

H∗F̃t(θ̃)(F̃
∗
t (θ̃)−H∗F̃t(θ̃))

′

]
H∗−1′ β̃1

= −cH∗
0

Ṽ −1


K∑
j=1

wj(θ̃)Γ̃wj(θ̃) +
K∑
j=1

K∑
l ̸=j

wj(θ̃)Γ̃j−lwl(θ̃)

 Ṽ −1

+


K∑
j=1

w2
j (θ̃) +

K∑
j=1

K∑
l ̸=j

wj(θ̃)

(
1

T

T∑
t=1

F̃t−j/mF̃
′
t−l/m

)
wl(θ̃)

 Γ̃Ṽ −2

 β̃1
= −cH∗

0 B̃β1 + op∗(1)

in probability, where we define B̃β1 as follows.

B̃β1 ≡

Ṽ −1


K∑
j=1

wj(θ̃)Γ̃wj(θ̃) +
K∑
j=1

K∑
l ̸=j

wj(θ̃)Γ̃j−lwl(θ̃)

 Ṽ −1

+


K∑
j=1

w2
j (θ̃) +

K∑
j=1

K∑
l ̸=j

wj(θ̃)

(
1

T

T∑
t=1

F̃t−j/mF̃
′
t−l/m

)
wl(θ̃)

 Γ̃Ṽ −2

 β̃1.
We can also rewrite the part with respect to θ̃ by Lemma C.4 as follows.

1√
T

T∑
t=1

∂F̃ ∗
t (θ̃)

∂θ̃
H∗−1′ β̃1β̃

′
1H

∗−1[H∗F̃t(θ̃)− F̃ ∗
t (θ̃)]

= −cβ̃1 ◦

Ṽ −1


K∑
j=1

∂wj(θ̃)

∂θ̃
Γ̃wj(θ̃) +

K∑
j=1

K∑
l ̸=j

∂wj(θ̃)

∂θ̃
Γ̃j−lwl(θ̃)

 Ṽ −1

+


K∑
j=1

∂wj(θ̃)

∂θ̃
wj(θ̃) +

K∑
j=1

K∑
l ̸=j

∂wj(θ̃)

∂θ̃

(
1

T

T∑
t=1

F̃t−j/mF̃
′
t−l/m

)
wl(θ̃)

 Γ̃Ṽ −2

 β̃1
= −cB̃θ + op∗(1),
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in probability, where we define B̃θ as follows.

B̃θ ≡ β̃1 ◦

Ṽ −1


K∑
j=1

∂wj(θ̃)

∂θ̃
Γ̃wj(θ̃) +

K∑
j=1

K∑
l ̸=j

∂wj(θ̃)

∂θ̃
Γ̃j−lwl(θ̃)

 Ṽ −1

+


K∑
j=1

∂wj(θ̃)

∂θ̃
wj(θ̃) +

K∑
j=1

K∑
l ̸=j

∂wj(θ̃)

∂θ̃

(
1

T

T∑
t=1

F̃t−j/mF̃
′
t−l/m

)
wl(θ̃)

 Γ̃Ṽ −2

 β̃1.
Next, we derive the hessian matrix. We first rewrite it as follows.

1

T

T∑
t=1

H(F̃ ∗
t , α̃) =

1

T

T∑
t=1

ξt
∂2g(F̃ ∗

t , α̃)

∂α̃∂α̃′ +
1

T

T∑
t=1

∂g(F̃ ∗
t , α̃)

∂α̃

∂g(F̃ ∗
t , α̃)

∂α̃′ = H1 +H2.

Then, H1 is op∗(1) by Condition C.5*-(b) and the results in the proof for Lemma C.3. The second

term H2 converges in probability to Φ∗
0Σ̃Φ

∗
0 as following:

1

T

T∑
t=1

∂g(F̃ ∗
t , α̃)

∂α̃

∂g(F̃ ∗
t , α̃)

∂α̃′
p∗−→ Φ∗

0E
[∂g(F̃t, α)

∂α

∂g(F̃t, α)

∂α′

]
Φ∗
0 ≡ Φ∗

0Σ̃Φ
∗
0, (24)

where E
[
∂g(F̃t,α)

∂α
∂g(F̃t,α)

∂α′

]
≡ Σ̃. We can obtain this by rewriting

∂g(F̃ ∗
t ,α̃)

∂α̃ = Φ∗ ∂g(F̃t,α)
∂α + P ∗

t . Then,

1
T

∑T
t=1

∂g(F̃t,α̃)
∂α̃ P ∗′

t = op∗(1) and 1
T

∑T
t=1 P

∗
t P

∗′
t = op∗(1), in probability. By putting all together,

we have

√
T (α̃∗ − (Φ∗

0)
−1α̃)

d∗−→ N(−c(Φ∗
0Σ̃Φ

∗
0)

−1Φ∗
0B̃α,Φ

∗−1
0 Σ̃−1Ω̃Σ̃−1Φ∗−1

0 ), (25)

in probability, where B̃α = (0, B̃β1 , B̃θ)
′. Under Assumptions A.1-A.6, we have plim Ṽ = V ,

plim α̃ = Φ−1α, plimΦ∗ = Φ∗
0, and plim Ω̃ = Φ0ΩΦ0. This implies that

√
T (α̃∗ − (Φ∗

0)
−1α̃)

d∗−→

N(−cΦ∗−1
0 ∆α,Φ

∗−1
0 ΣαΦ

∗−1
0 ), in probability.

The proof of Lemma C.3 is similar to the proof of Lemma B.2 in GP (2014) and Lemma C.3 -

(a) and (c) are similar to the proof of Lemma B.3 - (a) and (b) in GP (2014), respectively. Thus,

we focus here to prove Lemma C.3-(b) and (d).

Proof of Lemma C.3. Part(b): Using the identity in GP (2014), we can rewrite the part
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(b) as follows.

1

T

T∑
t=1

(f̃∗t−j/m −H∗f̃t−j/m)(f̃∗t−l/m −H∗f̃t−l/m)′

= Ṽ ∗−1 1

T

T∑
t=1

(A∗
1,t−j/m +A∗

2,t−j/m +A∗
3,t−j/m +A∗

4,t−j/m)

× (A∗
1,t−l/m +A∗

2,t−l/m +A∗
3,t−l/m +A∗

4,t−l/m)′Ṽ ∗−1.

Ignoring Ṽ ∗−1 = Op∗(1), we can show that the terms except 1
T

∑T
t=1A

∗
3,t−j/mA

∗′
3,t−l/m are neg-

ligible. For example, we have 1
T

∑T
t=1A

∗
1,t−j/mA

∗′
1,t−l/m = Op∗(T

−1), 1
T

∑T
t=1A

∗
2,t−j/mA

∗′
2,t−l/m =

Op∗(N
−1δ−2

NTH
), and 1

T

∑T
t=1A

∗
4,t−j/mA

∗′
4,t−l/m = Op∗(N

−1δ−2
NTH

). The cross terms are: 1
T

∑T
t=1A

∗
1,t−j/mA

∗′
2,t−l/m =

Op∗(T
−1/2N−1/2δ−1

NTH
), 1

T

∑T
t=1A

∗
1,t−j/mA

∗′
3,t−l/m = Op∗(T

−1/2N−1/2), 1
T

∑T
t=1A

∗
1,t−j/mA

∗′
4,t−l/m =

Op∗(T
−1/2N−1/2), 1

T

∑T
t=1A

∗
2,t−j/mA

∗′
3,t−l/m = Op∗(N

−1δ−2
NTH

), A∗
2,t−j/mA

∗′
4,t−l/m = Op∗(N

−1δ−1
NTH

),

and 1
T

∑T
t=1A

∗
3,t−j/mA

∗′
4,t−l/m = Op∗(N

−1δ−1
NTH

). Since we can show that

1

T

T∑
t=1

A∗
3,t−j/mA

∗′
3,t−l/m =

1

N
H∗ 1

T

T∑
t=1

(
Λ̃′e∗t−j/m√

N

)(
e∗

′

t−l/mΛ̃
√
N

)
H∗ + op∗(1),

we have

1√
T

T∑
t=1

(f̃∗t−j/m −H∗f̃t−j/m)(f̃∗t−l/m −H∗f̃t−l/m)′ =

√
T

N
Ṽ ∗−1H∗Γ̃j−lH

∗Ṽ ∗−1 + op∗(1),

where we define Γ∗
j−l ≡

1
T

∑T
t=1

(
Λ̃′e∗

t−j/m√
N

)(
e∗

′
t−l/m

Λ̃
√
N

)
. Part (d): Similar to the identity we used

in part (b), we can rewrite part (d) as follows.

1√
T

T∑
t=1

H∗f̃t−j/m(f̃∗t−l/m −H∗f̃t−l/m)′

=
1√
T

T∑
t=1

H∗f̃t−j/m(A∗
1,t−l/m +A∗

2,t−l/m +A∗
3,t−l/m +A∗

4,t−l/m)′Ṽ ∗−1

≡
√
TH∗(d∗f1 + d∗f2 + d∗f3 + d∗f4)

′Ṽ ∗−1,

where d∗fi ≡
1
T

∑T
t=1 f̃t−j/mA

∗′
i,t−l/m for i = 1, 2, 3, 4. Then, we can obtain d∗f1 = Op∗(δ

−1
NTH

T−1/2)+

Op∗(T
−1
H ), d∗f2 = Op∗((TN)−1/2) by Condition C.3*-(a) and d∗f3 = Op∗((TN)−1/2) by Condi-
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tion C.3*-(b). Finally, d∗f4 =
1
N

(
1
T

∑T
t=1 f̃t−l/mF̃

′
t−j/m

)
Γ∗
(

1
TH

∑TH
t=1 f̃tf̃

∗′
t

)
Ṽ ∗−1 + op∗(1). Thus,

1√
T

T∑
t=1

H∗f̃t−j/m(f̃∗t−l/m −H∗f̃t−l/m)′

=

√
T

N
H∗

(
1

T

T∑
t=1

f̃t−l/mf̃
′
t−j/m

)
Γ∗

(
1

TH

TH∑
s=1

f̃sf̃
∗′
s

)
Ṽ ∗−2 + op∗(1).

Proof of Lemma C.4. Part (a): We rewrite part (a) and apply Lemma C.3.

1√
T

T∑
t=1

 K∑
j=1

wj(θ̃)(f̃
∗
t−j/m −H∗f̃t−j/m)

 K∑
j=1

wj(θ̃)(f̃
∗
t−j/m −H∗f̃t−j/m)

′

=
K∑
j=1

wj(θ̃)

[
1√
T

T∑
t=1

(f̃∗t−j/m −H∗f̃t−j/m)(f̃∗t−j/m −H∗f̃t−j/m)′

]
wj(θ̃)

+

K∑
j=1

K∑
l ̸=j

wj(θ̃)

[
1√
T

T∑
t=1

(f̃∗t−j/m −H∗f̃t−j/m)(f̃∗t−l/m −H∗f̃t−l/m)′

]
wl(θ̃)

= cṼ ∗−1H∗

 K∑
j=1

wj(θ̃)Γ
∗wj(θ̃) +

K∑
j=1

wj(θ̃)Γ
∗
j−lwl(θ̃)

H∗Ṽ ∗−1 + op∗(1)

= cH∗
0 Ṽ

−1

 K∑
j=1

wj(θ̃)Γ
∗wj(θ̃) +

K∑
j=1

wj(θ̃)Γ
∗
j−lwl(θ̃)

 Ṽ −1H∗
0 + op∗(1).

We use Lemma B.1 in GP (2014) to obtain the final equality, Ṽ ∗ = H∗Ṽ H∗′ + Op∗(δ
−2
NTH

) =

Ṽ +Op∗(δ
−2
NTH

) and H∗ = H∗
0 +Op∗(δ

−2
NTH

) in probability.
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Part (b):

1√
T

T∑
t=1

 K∑
j=1

wj(θ̃)(f̃
∗
t−j/m −H∗f̃t−j/m)

 K∑
j=1

wj(θ̃)H
∗f̃t−j/m

′

=
K∑
j=1

wj(θ̃)
1√
T

T∑
t=1

H∗f̃t−j/m(f̃∗t−j/m −H∗f̃t−j/m)′wj(θ̃)

+
K∑
j=1

K∑
l ̸=j

wj(θ̃)
1√
T

T∑
t=1

H∗f̃t−l/m(f̃∗t−j/m −H∗f̃t−j/m)′wl(θ̃)

= cH∗

 K∑
j=1

w2
j (θ̃) +

K∑
j=1

K∑
l ̸=j

wj(θ̃)

(
1

T

T∑
t=1

f̃t−l/mf̃
′
t−j/m

)
wl(θ̃)

Γ∗

(
1

TH

TH∑
s=1

f̃sf̃
∗′
s

)
Ṽ ∗−2 + op∗(1)

= cH∗
0

 K∑
j=1

w2
j (θ̃) +

K∑
j=1

K∑
l ̸=j

wj(θ̃)

(
1

T

T∑
t=1

f̃t−l/mf̃
′
t−j/m

)
wl(θ̃)

Γ∗Ṽ −2H∗
0 + op∗(1),

in probability. The final equality is by applying Lemma B.1. in GP (2014) and by f̃∗′ f̃
TH

Ṽ ∗−1 =

Ṽ −1H∗ and H∗Ṽ ∗−1 = Ṽ −1H∗.

In the remaining part, we prove Theorem 3.1. Recall that

e∗i,th =

pi∑
j=1

ϕ̃i,j(pi)e
∗
i,th−j + u∗i,th for th = 1, . . . , TH , (26)

where ϕ̃i(pi) = (ϕ̃i,j(pi), j = 1, . . . , pi) is Yule-Walker autoregressive parameter estimators. By the

fact that ϕ̃i(pi) is Yule-Walker estimator, we can represent (26) as moving average process of order

∞ as

e∗i,th =

∞∑
j=0

ψ̃i,j(pi)u
∗
i,th−j , (27)

with ψ̃i,0(pi) = 1. By stacking (26) and (27) over i = 1, . . . , N , we can rewrite it as vector

representation as follows.

e∗th =

pi∑
j=1

Φ̃j(p)e
∗
th−j + u∗t , and (28)

e∗th =
∞∑
j=0

Ψ̃j(p)u
∗
th−j , (29)

with Ψ̃0(p) = IN and p = max(p1, . . . , pN ). Note that Φ̃j(p) is N × N high-dimensional matrix,
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but it is a diagonal matrix by the construction such that Φ̃j(p) = diag(ϕ̃1,j(p1), . . . , ϕ̃N,j(pN )). To

prove Theorem 3.1, we include an auxiliary Lemma below.

Lemma C.5

(a)
∑∞

j=0 ∥Ψ̃j(p)−Ψj∥ = op(1), where Ψj is MA coefficients for et such that et =
∑∞

j=0Ψjut−j.

(b)
∑∞

j=0 |ψ̃i,j |8 = Op(1) for i = 1, . . . , N .

Proof of Lemma C.5. To prove Lemma C.5-(a), we use the arguments in Bi et al. (2021),

specifically, Lemma C.7 in their supplement appendix. The difference is that their bootstrap is

applied to the factors, whereas our bootstrap is constructed using the idiosyncratic error terms.

Using their arguments in the proof of their Lemma C.7 and the fact that ẽi,t − ei,t = c̃i,t − ci,t =

Op(δ
−1
NTH

), we can obtain the same result as in Lemma C.5, which yields
∑∞

j=0 ∥Ψ̃j(p)−Ψj∥ = op(1).

For (b), we can use Lemma C.5 and Assumption 3 to conclude.

Proof of Theorem 3.1. Following Lemma C.1, Remark 3 and 4, it is sufficient to show that

our bootstrap algorithm described in Section 3 satisfy the bootstrap high level conditions C.1*-

C.6*. Condition C.1*. Part (a): We can show that E∗(e∗i,th) =
∑∞

j=0 ψ̃i,j(pi)E
∗(u∗i,th−j) = 0

since E∗(u∗i,th−j) = 0 by its construction such that u∗th = Σ̃
1/2
u ηth with ηth ∼ i.i.d.(0, IN ). Part (b):

We first write γ∗st as follows.

γ∗st = E∗
(

1

N
e∗′t e

∗
s

)

= E∗

 1

N

 ∞∑
j1=0

Ψ̃j1(p)u
∗
t−j1

′ ∞∑
j2=0

Ψ̃j2(p)u
∗
s−j2


= E∗

 1

N
tr

 ∞∑
j1=0

∞∑
j2=0

Ψ̃j1(p)u
∗
t−j1u

∗′
s−j2Ψ̃

′
j2


= tr

 1

N

∞∑
j=0

Ψ̃j(p)Σ̃uΨ̃s−t+j(p)
′

 , (30)

where we obtain the last equality since E∗(u∗t−j1
u∗′s−j2

) = 0 if t − j1 ̸= s − j2. Using (30), we can
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write our condition as following:

1

TH

TH∑
s,t=1

|γ∗st|2 =
1

TH

TH∑
s,t=1

∣∣∣∣∣∣tr
 1

N

∞∑
j=0

Ψ̃j(p)Σ̃uΨ̃s−t+j(p)
′

∣∣∣∣∣∣
2

≤

(
∥Σ̃u∥2

N

) 1

N

1

TH

TH∑
s,t=1

∥∥∥∥∥∥
∞∑
j=0

Ψ̃s−t+j(p)
′Ψ̃j(p)

∥∥∥∥∥∥
2

≤

(
∥Σ̃u∥2

N

)
1

N

1

TH

TH∑
s,t=1

∞∑
j=0

∥∥∥Ψ̃s−t+j(p)
∥∥∥2 ∥∥∥Ψ̃j(p)

∥∥∥2 = Op(1).

We can show that ∥Σ̃u∥2/N = Op(1) since we can show the similar arguments in GP (2020)

such that ∥Σ̃u∥ ≤ ρ(Σ̃u)
√

rank(Σ̃u) ≤ ρ(Σ̃u)
√
N under Assumption 4 and 5. We can also show

that 1
N

1
TH

∑TH
s,t=1

∑∞
j=0

∥∥∥Ψ̃s−t+j(p)
∥∥∥2 ∥∥∥Ψ̃j(p)

∥∥∥2 = Op(1) under the summability condition. Part (c):

First, note that we can write

E∗

∣∣∣∣∣ 1√
N

N∑
i=1

(e∗i,the
∗
i,sh

− E∗(e∗i,the
∗
i,sh

))

∣∣∣∣∣
2

=
1

N

N∑
i,j=1

Cov∗(e∗i,the
∗
i,sh

, e∗j,the
∗
j,sh

)

=
1

N

N∑
i,j=1

∞∑
k1,k2,k3,k4=0

ψ̃i,k1ψ̃i,k2ψ̃j,k3ψ̃j,k4Cov
∗(u∗i,th−k1u

∗
i,sh−k2 , u

∗
j,th−k3u

∗
j,sh−k4).

We can write ui,th = a′iηth =
∑N

l=1 ailηl,th , where a
′
i denotes the i-th row of Σ̃

1/2
u . For simpler

notation, define Cov∗(e∗i,the
∗
i,sh

, e∗j,the
∗
j,sh

) = ∆ij,thsh . We can rewrite ∆ij,thsh as follows.

∆ij,thsh =

∞∑
k1,k2,k3,k4=0

ψ̃i,k1ψ̃i,k2ψ̃j,k3ψ̃j,k4

N∑
l1,l2,l3,l4=1

ai,l1ai,l2aj,l3aj,l4

× Cov∗(ηl1,th−k1ηl2,sh−k2 , ηl3,th−k3ηl4,sh−k4)︸ ︷︷ ︸
A∗

.

Since ηl,th ∼ i.i.d.(0, IN ), we can consider A∗ based on the choice of li for i = 1, 2, 3, 4 and th − k1,

sh − k2, th − k3 and sh − k4. We need l1 = l2 = l3 = l4, l1 = l3 ̸= l2 = l4, or l1 = l4 ̸= l2 = l3

for A∗ to be non-zero. If l1 = l2 = l3 = l4, we need th − k1 = sh − k2 = th − k3 = sh − k4,

th−k1 = th−k3 ̸= sh−k2 = sh−k4, or th−k1 = sh−k4 ̸= sh−k2 = th−k3. In this case, we have

A∗ = E∗(η4l,th)− 1 or 1. If l1 = l3 ̸= l2 = l4, we need th − k1 = th − k3 and sh − k2 = sh − k4, and
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we have A∗ = 1. Similarly, when l1 = l4 ̸= l2 = l3, we need th− k1 = sh− k4 and sh− k2 = th− k3,

and this yields A∗ = 1. Letting η̄ ≥ max{E∗(η4l,th)− 1, 1}, we can bound the condition as follows.

1

T 2
H

TH∑
sh,th=1

1

N

N∑
i,j=1

∆ij,thsh

≤ η̄

 ∞∑
k1,k2=0

ψ̃i,k1ψ̃i,k2ψ̃j,k1ψ̃j,k2 + ψ̃i,k1
˜i, k2ψ̃j,t−s+k2ψ̃j,s−t+k1

( N∑
l=1

ai,laj,l

)2

≤ η̄


( ∞∑

k=0

ψ̃i,kψ̃j,k

)2( N∑
l=1

ai,laj,l

)2

︸ ︷︷ ︸
=Aij−(I)

+

( ∞∑
k=0

ψ̃i,kψ̃j,s−t+k

)( ∞∑
k=0

ψ̃i,kψ̃j,t−s+k

)(
N∑
l=1

ai,laj,l

)2

︸ ︷︷ ︸
=Aij−(II)

 .

Thus, the condition is bounded by

η̄

 1

T 2

TH∑
t,s=1

1

N

N∑
i,j=1

Aij − (I) +
1

T 2

TH∑
t,s=1

1

N

N∑
i,j=1

Aij − (II)

 .

We can show that
∑N

i,j=1Aij − (I) = Op(1) which is sufficient to show that the first term is Op(1).

Note that we can bound it further by Cauchy-Schwarz inequality as follows.

1

N

N∑
i,j=1

( ∞∑
k=0

ψ̃i,kψ̃j,k

)2( N∑
l=1

ai,laj,l

)2

≤

 1

N

N∑
i,j=1

( ∞∑
k=0

ψ̃i,kψ̃j,k

)4


1/2 1

N

N∑
i,j=1

(
N∑
l=1

ai,laj,l

)4


1/2

.

We can show that for some positive constant M , by repetitive application of Hölder’s inequality,( ∞∑
k=0

ψ̃i,kψ̃j,k

)4

≤M

( ∞∑
k=0

|ψ̃i,kψ̃j,k|4
)

≤M

∞∑
k=0

|ψ̃i,k|4|ψ̃j,k|4.

By Cauchy-Schwarz inequality, we can show that

1

N

N∑
i,j=1

( ∞∑
k=0

ψ̃i,kψ̃j,k

)4

≤M

(
1

N

N∑
i=1

|ψ̃i,k|8
)1/2

 1

N

N∑
j=1

|ψ̃j,k|8
1/2

.

We can show that this is Op(1) by Assumption 3. We can also show that
{

1
N

∑N
i,j=1(a

′
iaj)

4
}1/2

=

51



Op(1), because we have 1

N

N∑
i,j=1

(a′iaj)
2

1/2

≤
√
tr(Σ̃4

u)/N ≤
√
{tr(Σ̃2

u)}2/N = ∥Σ̃u∥/
√
N = Op(1).

We can obtain the final equality by Assumption 5 and by applying the arguments in GP (2020)

to Σ̃u such that ∥Σ̃u∥ ≤ ρ(Σ̃u)
√

rank(Σ̃u) ≤ ρ(Σ̃u)
√
N (in their proof of Theorem 3.1). For the

second term involved with Aij − (II), by applying Cauchy-Schwarz inequality, we have

1

T 2
H

TH∑
s,t=1

1

N

N∑
i,j=1

Aij − (II) ≤

 1

N

N∑
i,j=1

(
N∑
l=1

ai,laj,l

)2


1/2 1

N

N∑
i,j=1

 1

T 2
H

TH∑
s,t=1

( ∞∑
k=0

ψ̃i,kψ̃j,s−t+k

)2
2

1/2

.

We can show that

{
1
N

∑N
i,j=1

(∑N
l=1 ai,laj,l

)2}1/2

= Op(1) by using the similar arguments above.

For the remaining term, we use Cauchy-Schwarz inequality as follows.

1

N

N∑
i,j=1

 1

T 2
H

TH∑
s,t=1

( ∞∑
k=0

ψ̃i,kψ̃j,s−t+k

)2
2

≤ 1

N

N∑
i,j=1

1

T 2
H

 ∞∑
k=0

|ψ̃i,k|2
1

TH

TH∑
s,t=1

|ψ̃j,s−t+k|2
2

Since we can show that
∑∞

k=0 |ψ̃i,k|2 1
TH

∑TH
s,t=1 |ψ̃j,s−t+k|2 = Op(1), the order of the above term is

Op(N/T
2
H).

Condition C.2*. Part (a): By Cauchy-Schwarz inequality, we can bound the condition as

follows. ∥∥∥∥∥ 1

TH

TH∑
t=1

f̃sf̃
′
tγ

∗
st

∥∥∥∥∥ ≤

 1

TH

TH∑
s,t=1

∥f̃sf̃ ′t∥2
1/2 1

TH

TH∑
s,t=1

|γ∗st|2
1/2

= Op(1).

We can show the term in the first parenthesis Op(1) since we can show that 1
TH

∑TH
t=1 ∥f̃t∥4 = Op(1)

by using Lemma C.1-(i) in GP (2014) and use Cauchy-Schwarz inequality. The term in the second

parenthesis is Op(1) by Condition C.1*-(b). Part (b): For simpler notation, in the remaining proof,

we let ψ̃i,j = ψ̃i,j(pi) and Ψ̃j = Ψ̃j(p). Note that we can rewrite the condition as follows.

1

TH

TH∑
t=1

1

TH

TH∑
s,l=1

∥f̃ ′sf̃l∥2
1

N

N∑
i,j=1

Cov∗(e∗i,te
∗
i,s, e

∗
j,te

∗
j,l).

By considering the combination of i, j and t, s and l, the covariance term Cov∗(e∗i,te
∗
i,s, e

∗
j,te

∗
j,l) can

52



be further bounded as follows.

Cov∗(e∗i,te
∗
i,s, e

∗
j,te

∗
j,l) ≤ η̄


 ∞∑

k1,k2=0

ψ̃i,k1ψ̃i,k2ψ̃j,k1ψ̃j,l−s+k2

( N∑
m=1

ai,maj,m

)2

+

 ∞∑
k1,k2=0

ψ̃i,k1ψ̃i,k2ψ̃j,t−s+k2ψ̃j,l−t+k1

( N∑
m=1

ai,maj,m

)2


= η̄(Bij − (I) +Bij − (II)),

where we denote Bij−(I) =
(∑∞

k1,k2=0 ψ̃i,k1ψ̃i,k2ψ̃j,k1ψ̃j,l−s+k2

)(∑N
m=1 ai,maj,m

)2
and Bij−(II) =(∑∞

k1,k2=0 ψ̃i,k1ψ̃i,k2ψ̃j,t−s+k2ψ̃j,l−t+k1

)(∑N
m=1 ai,maj,m

)2
. Then, using this bound on the covari-

ance term, the condition is bounded by the following equation.

η̄

 1

T 2
H

TH∑
t,s,l=1

∥f̃ ′sf̃l∥2
1

N

N∑
i,j=1

Bij − (I) +
1

T 2
H

TH∑
t,s,l=1

∥f̃ ′sf̃l∥2
1

N

N∑
i,j=1

Bij − (II)


The first term in the square bracket can be bounded by Cauchy-Schwarz inequality as follows.

1

T 2
H

TH∑
t,s,l=1

∥f̃ ′sf̃l∥2
1

N

N∑
i,j=1

Bij − (I) ≤ 1

TH

TH∑
t=1

 1

TH

TH∑
s,l=1

∥f̃ ′sf̃l∥4
1/2 1

TH

TH∑
s,l=1

∣∣∣∣∣∣ 1N
N∑

i,j=1

Bij − (I)

∣∣∣∣∣∣
21/2

We can show that 1
TH

∑TH
s,l= ∥f̃ ′sf̃l∥4 = Op(1) by applying Lemma C.1 in GP (2014) with p = 8 (this

can be verified under our Assumption 1). To show that 1
TH

∑TH
s,l=1

∣∣∣ 1N ∑N
i,j=1Bij − (I)

∣∣∣2 = Op(1),

we first bound it by Cauchy-Schwarz inequality as follows.

1

TH

TH∑
s,l=1

∣∣∣∣∣∣ 1N
N∑

i,j=1

Bij − (I)

∣∣∣∣∣∣
2

≤

 1

N

N∑
i,j=1

(a′iaj)
2

 1

N

N∑
i,j=1

1

TH

TH∑
s,l=1

 ∞∑
k1,k2=0

ψ̃i,k1ψ̃i,k2ψ̃j,k1ψ̃j,l−s+k2

2 .

As in the proof of Condition C.1*-(c), we can show that 1
N

∑N
i,j=1(a

′
iaj)

2 = Op(1). First, note

that by using Hölder’s inequality, we can show that
(∑∞

k1,k2=0 ψ̃i,k1ψ̃i,k2ψ̃j,k1ψ̃j,l−s+k2

)2
≤ M∑∞

k1,k2=0 |ψ̃i,k1ψ̃i,k2ψ̃j,k1ψ̃j,l−s+k2 |2, for some positive constant M . Then, we apply Cauchy-Schwarz

inequality and Hölder’s inequality to obtain the following inequality. For some positive constant
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M ,

1

N

N∑
i,j=1

1

TH

TH∑
s,l=1

 ∞∑
k1,k2=0

ψ̃i,k1ψ̃i,k2ψ̃j,k1ψ̃j,l−s+k2

2

≤M

 1

N

N∑
i=1

∞∑
k1=0

|ψ̃i,k1 |4
∞∑

k2=0

|ψ̃i,k2 |4
1/2 1

N

N∑
j=1

∞∑
k1=0

|ψ̃j,k1 |4
 ∞∑

k2=0

1

TH

TH∑
s,l=1

|ψ̃j,l−s+k2 |2
21/2

.

Note that 1
TH

∑TH
s,l=1 |ψ̃j,l−s+k2 |2 =

∑TH−1
τ=0

(
1− τ

TH

)
|ψ̃j,τ+k2 |2 ≤

∑∞
τ=0 |ψ̃j,τ+k2 |2. Then, since∑∞

k2=0

∑∞
τ=0 |ψ̃j,τ+k2 |2 =

∑∞
k3=0(k3+1)|ψ̃j,k3 |2, we can show that

(∑∞
k2=0

1
TH

∑TH
s,l=1 |ψ̃j,l−s+k2 |2

)2
≤

M1
∑∞

k3=0(k3 + 1)2|ψ̃j,k3 |4 for some positive constant M1. Therefore, we can show that the second

term isOp(1) by Assumption 3 with r = 2. By Assumption 3, we can show that 1
N

∑N
i=1

∑∞
k1=0 |ψ̃i,k1 |4∑∞

k2=0 |ψ̃i,k2 |4 = Op(1) and we can also show that the remaining term in the above inequality is

Op(1). Next, we show that 1
TH

∑TH
s,l=1

∣∣∣ 1N ∑N
i,j=1Bij − (I)

∣∣∣2 = Op(1). By applying Cauchy-Schwarz

inequality repetitively, it is sufficient to show that

1

N

N∑
i,j=1

1

TH

TH∑
s,l=1

∣∣∣∣∣∣ 1

TH

TH∑
t=1

 ∞∑
k1,k2=0

ψ̃i,k1ψ̃i,k2ψ̃j,t−s+k2ψ̃j,l−t+k1

∣∣∣∣∣∣
2

≤M
1

TH

 1

N

N∑
i,j=1

∣∣∣∣∣∣ 1

TH

TH∑
t,l=1

∞∑
k=0

|ψ̃i,kψ̃j,l−t+k|2
∣∣∣∣∣∣
21/2 1

N

N∑
i,j=1

∣∣∣∣∣∣ 1

TH

TH∑
t,s=1

∞∑
k2=0

|ψ̃i,kψ̃j,t−s+k|2
∣∣∣∣∣∣
21/2

= Op(1).

In fact, we can use Cauchy-Schwarz inequality and Assumption 3 to show that the term is Op(1).

For example, we can show that

1

N

N∑
i,j=1

∣∣∣∣∣∣ 1

TH

TH∑
t,l=1

∞∑
k=0

|ψ̃i,kψ̃j,l−t+k|2
∣∣∣∣∣∣
2

=
1

N

N∑
i,j=1

∣∣∣∣∣∣
∞∑
k=0

|ψ̃i,k|2
1

TH

TH∑
t,l=1

|ψ̃j,l−t+k|2
∣∣∣∣∣∣
2

≤

(
M1

1

N

N∑
i=1

∞∑
k=0

|ψ̃i,k|8
)1/2

M2
1

N

N∑
j=1

∞∑
k=0

|(1 + k)4|ψ̃j,k|8
1/2

= Op(1),

for some positive constants M1 and M2. We obtain the final equality by Assumption 3 with r = 4.
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Part (c): First, note that we can write the condition as follows.

E∗

∥∥∥∥∥ 1√
THN

TH∑
t=1

N∑
i=1

f̃tλ̃
′
ie

∗
i,t

∥∥∥∥∥
2

=
1

TH

TH∑
t,s=1

tr(f̃tf̃
′
s)E

∗

(
e∗′s Λ̃√
N

Λ̃′e∗t√
N

)

Since E∗
(
e∗′s Λ̃√
N

Λ̃′e∗t√
N

)
= E∗

[
tr
(
Λ̃′e∗t√

N

e∗′s Λ̃√
N

)]
, we focus on E∗(e∗t e

∗′
s ). Under vector MA(∞) represen-

tation of e∗t , we can write it as follows.

E∗(e∗t e
∗′
s ) =

∞∑
k1,k2=0

Ψ̃k1E
∗(u∗t−k1u

∗′
s−k2)Ψ̃k2 =

∞∑
k=0

Ψ̃kΣ̃uΨ̃
′
s−t+k

By plugging this back into the condition and using Cauchy-Schwarz inequality,

E∗

∥∥∥∥∥ 1√
THN

TH∑
t=1

N∑
i=1

f̃tλ̃
′
ie

∗
i,t

∥∥∥∥∥
2

=
1

TH

TH∑
t,s=1

tr(f̃tf̃
′
s)tr

(
Λ̃′∑∞

k=0 Ψ̃kΣ̃uΨ̃
′
s−t+kΛ̃

N

)

≤

 1

TH

TH∑
t,s=1

|tr(f̃tf̃ ′s)|2
1/2 1

TH

TH∑
t,s=1

∣∣∣tr(Γ̃s−t)
∣∣∣2
1/2

,

where we denote Γ̃s−t =
1
N Λ̃′

(∑∞
k=0 Ψ̃kΣ̃uΨ̃

′
s−t+k

)
Λ̃. We can show that the first term is Op(1) by

Assumption 1 and using the results in Lemma C.1 in GP (2014). For the second term, it is sufficient

to show that tr(Γ̃t) = Op(1). This is implied by Condition C.6*-(b), which will be verified. Part

(d): We can rewrite the condition as follows.

1

TH

TH∑
t=1

E∗

∥∥∥∥∥ Λ̃′e∗t√
N

∥∥∥∥∥
2

=
1

TH

TH∑
t=1

E∗

[
tr

(
Λ̃′e∗t e

∗′
t Λ̃

N

)]
=

1

TH

TH∑
t=1

tr

(
Λ̃′E∗(e∗t e

∗′
t )Λ̃

N

)

As we have shown previously in the proof of Condition C.2*-(c), we can write E∗(e∗t e
∗′
t ) =

∑∞
k=0 Ψ̃kΣ̃uΨ̃

′
k.

Therefore, the condition is 1
TH

∑TH
t=1 tr

(
Λ̃′ ∑∞

k=0 Ψ̃kΣ̃uΨ̃′
kΛ̃

N

)
, and this is Op(1) given that tr(Γ̃0) =

Op(1). Part (e): To verify this condition, we use r = 1 (recall that r is the number of fac-

tors) for a simpler notation. Therefore, it suffices to show that V ar∗(A∗) = op(1), where A
∗ =
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1
TH

∑TH
t=1

(
Λ̃′e∗t√

N

)(
e∗′t Λ̃√
N

)
. Note that

V ar∗(A∗) =
1

T 2
H

TH∑
t,s=1

1

N2

N∑
i,j,k,l

λ̃iλ̃j λ̃kλ̃lCov
∗(e∗i,te

∗
j,t, e

∗
l,se

∗
k,s)

≤ 2η̄
1

T 2
H

TH∑
t,s=1

1

N2

N∑
i,j,k,l

λ̃iλ̃j λ̃kλ̃l

 ∞∑
p1,p2=0

ψ̃i,p1ψ̃j,p2ψ̃l,s−t+p1ψ̃k,s−t+p2


×

 N∑
m1,m2=1

ai,m1aj,m2al,m1ak,m2


= 2η̄

1

T 2
H

TH∑
t,s=1


 1

N

N∑
i,l=1

λ̃iλ̃l

 ∞∑
p1=0

ψ̃i,p1ψ̃l,s−t+p1

( N∑
m1=1

ai,m1al,m1

)
2

= 2η̄
1

T 2
H

TH∑
t,s=1

(
Λ̃′∑∞

p=0 Ψ̃pΣ̃uΨ̃s−t+pΛ̃

N

)2

,

where we obtain the second inequality by taking account of the covariance term given the combi-

nation of i, j, k, and l and t and s, similar to the proof of Condition C.1*-(c). Note that given that

tr(Γ̃s−t) = Op(1), we can show that 1
TH

∑TH
t,s=1 Γ̃

2
s−t = Op(1). Therefore, V ar∗(A∗) = Op(1/TH) =

op(1). The proof to verify Condition C.3* is very similar to the proof of Condition C.2*. For

example, Condition C.3*-(b) and (c) can be verified given that tr(Γ̃τ ) = Op(1) with τ ̸= 0.

Condition C.4* Part (a): Given that ε∗t and e∗t−j/m are independent in Assumption 2, it is

sufficient to show that

1

T

T∑
t=1

1

NT

T∑
s,l=1

N∑
i=1

Cov∗(e∗i,t−j/me
∗
i,s−j/m, e

∗
i,t−j/me

∗
i,l−j/m) = Op(1).

We show a similar term is Op(1) in Condition C.2*-(b). Part (b): Similarly, given the independence

of ε∗t and e∗i,t−j/m, it suffices to show that E∗
∥∥∥∥ 1√

T

∑T
t=1

Λ̃′e∗
t−j/m√
N

∥∥∥∥2 = Op(1), which is verified in

Condition C.2*-(c). Condition C.5* andCondition C.6*-(a) can be verified using the arguments

in GP (2014), since ε∗t is constructed in the same way. Condition C.6*- Part (b): Note that Γ̃k

can be rewritten as follows.

Γ̃k =
1

TH

TH∑
t=1

1

N
Λ̃′

∞∑
p=0

Ψ̃pΣ̃uΨ̃
′
p−kΛ̃ =

Λ̃′Σ̃e,kΛ̃

N
,

where we let Σ̃e,k ≡
∑∞

p=0 Ψ̃pΣ̃uΨ̃
′
p−k. Let Γ̄k =

Λ′Σ̃e,kΛ
N . Then, by adding and subtracting appro-
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priately, we have the following:

Γ̃k −H0ΓkH
′
0 = Γ̃k −H0Γ̄kH

′
0 +H0Γ̄kH

′
0 −H0ΓkH

′
0

= (Γ̃k −H0Γ̄kH
′
0)︸ ︷︷ ︸

≡D1

+H0(Γ̄k − Γk)H
′
0︸ ︷︷ ︸

≡D2

.

We can show that D1 and D2 are op(1). In order to show that D2 = op(1), it is sufficient to show

that Σ̃e,k −Σe,k → 0, where Σe,k ≡
∑∞

p=0ΨpΣuΨ
′
p−k with Σu = E(utu

′
t). Note that we can expand

Σ̃e,k − Σe,k as follows.

Σ̃e,k − Σe,k =

∞∑
p=0

(Ψ̃p −Ψp)Σ̃uΨ̃p−k︸ ︷︷ ︸
D21

+
∞∑
p=0

Ψp(Σ̃u − Σu)Ψ̃p−k︸ ︷︷ ︸
D22

+
∞∑
p=0

ΨpΣu(Ψ̃p−k −Ψp−k)︸ ︷︷ ︸
D23

.

We can show that D22 = op(1) since ρ(Σ̃u−Σu)
p−→ 0 under Assumption 4 and 5 using the arguments

in GP (2020). We can show that D21 and D23 are of order op(1) by Lemma C.5. Next, we show

that D1 is op(1). We can decompose D1 further as follows.

D1 =
1

N
(Λ̃− ΛH−1)′Σ̃e,k(Λ̃− ΛH−1)︸ ︷︷ ︸

D11

+
1

N
H−1′Λ′Σ̃e,k(Λ̃− ΛH−1)︸ ︷︷ ︸

D12

+
1

N
(Λ̃− ΛH−1)′Σ̃e,kΛH

−1︸ ︷︷ ︸
D′

12

.

D11 = op(1) by applying Cauchy-Schwarz inequality as follows.

∥D11∥ ≤
∥∥∥∥ 1√

N
(Λ̃− ΛH−1)

∥∥∥∥2︸ ︷︷ ︸
=op(1)

∥∥∥∥∥∥
∞∑
p=0

Ψ̃pΣ̃uΨ̃
′
p−k

∥∥∥∥∥∥︸ ︷︷ ︸
=Op(1)

= op(1),

where we use the fact that∥∥∥∥∥∥
∞∑
p=0

Ψ̃pΣ̃uΨ̃
′
p−k

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
∞∑
p=0

Ψ̃pΨ̃
′
p−k

∥∥∥∥∥∥
∥∥∥Σ̃u

∥∥∥ ≤
∞∑
p=0

∥∥∥Ψ̃pΨ̃
′
p−k

∥∥∥ ρ(Σ̃u) = Op(1),

and use the arguments in GP (2020). Since we have

∥D12∥ ≤ ∥H−1∥
∥∥∥Λ/√N∥∥∥∥∥∥Σ̃e,k

∥∥∥(∥∥∥∥ 1√
N

(Λ̃− ΛH−1)

∥∥∥∥2
)1/2

,

we can show that this is op(1) using similar arguments as we did for D11.
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D Additional results

Table 7 shows the bias and 95% coverage rate of β when the idiosyncratic error term follows simple

AR (1) process as:

ei,th = ρiei,th−1 + vi,th for th = 1, . . . , TH

where vi,th is i.i.d. randomly generated from N(0, 1). ρ indicates the auto-regressive coefficient,

which implies the persistence of auto-regressive process. For simplicity, we impose that each variable

shares same autoregressive coefficient, ρi = ρ. In Table 7, we compare the results by varying

persistence. We increase the coefficient from 0 to 0.7. When the persistence in the idiosyncratic

error term is ρ = 0.5, the bias is around twice bigger than the bias where there is no serial-

dependence. Moreover, the size of bias increase as the persistence increases.

Table 7: Bias and 95% coverage rate of β

N TH
ρ = 0 ρ = 0.5 ρ = 0.6 ρ = 0.7

bias 95% bias 95% bias 95% bias 95%

50

150 -0.3380 84.7 -0.5887 68.02 -0.6808 60.42 -0.7993 49.18

300 -0.3100 81.76 -0.5362 57.94 -0.6197 48.16 -0.7278 35.18

600 -0.2890 74 -0.4970 40.96 -0.5746 29.32 -0.6761 17.2

100

150 -0.2022 89.82 -0.3763 83.18 -0.4450 79.34 -0.5372 72.62

300 -0.1709 90.72 -0.3157 81.1 -0.3729 75.68 -0.4502 67.1

600 -0.1565 88.7 -0.2849 75.36 -0.3358 67.44 -0.4047 56.16

200

150 -0.1343 91.48 -0.2639 87.6 -0.3163 85.38 -0.3890 81.8

300 -0.1027 92.5 -0.1996 89.18 -0.2393 87.28 -0.2943 83.54

600 -0.0865 92.44 -0.1647 88.02 -0.1968 85.48 -0.2411 80.7
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